CSE 373: Binary Search Trees

Chapter 4

Binary Trees

Binary Tree: a Tree in which every node has two children or fewer

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Numerical Trivia for Binary Trees

- Given a binary tree of depth d...
 - max number of nodes = min =
 - max number of leaves = min =
- Building a binary tree out of *n* nodes...
 - max depth of tree = min =

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Binary Search Tree

Binary Search Tree: a Binary Tree in which every node...

- is greater than all of its left descendents
- is less than all of its right descendents

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Implementation

Similar to our naive fixed-degree Tree:

```
template <class Comparable>
Class BinaryNode {
   Comparable data;
   BinaryNode* left;
   BinaryNode* right;
};
```


(As with generic trees, could use a parent pointer)

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Binary Search Tree Operations

• Search Operations:

```
Comparable& find(Comparable& val);
Comparable& findMin();
Comparable& findMax();
```

Collection Operations:

```
void insert(Comparable& val);
void remove(Comparable& val);
bool isEmpty();
```

- Creation/Deletion
- Traversals...

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Traversals

pre-order:

post-order:

in-order:

How would these be coded?

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Searching

- T.find(11);
- T.find(9);
- T.findMin();
- T.findMax();

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Asymptotic Analysis

Design Decision: Lazy Deletion

Lazy Deletion: Rather than deleting a node from a tree, merely *mark* it as being deleted

- operate around it as usual
- (just don't return it as the result of a **find()** op)

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Food For Thought

If I read a list of integers from a file and insert them into a Binary Search Tree one by one, what's an example of a worst-case file?

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms