CSE 373: Trees

Chapter 4

Summary of Chapter 3

Lists, Stacks, and Queues...

— are composed of elements in a sequential order

¢ Lists — arbitrary order
¢ Stacks — LIFO
¢ Queues - FIFO

— implementations are usually array- or link-based
— operations add, remove, find, iterate over elements

— usually, searching for a specific element is O(n)
¢ counterexample?

Trees

Trees allow the expression of non-sequential
relationships

Real-life Instances of Trees

e Family trees
* Organization Charts
* (lassification trees
— what kind of flower is this?
— what’s wrong with my car?
e File directory structure
— folders, subfolders in Windows
— directories, subdirectories in UNIX
* Non-recursive procedure call chains

Tree Terminology

(I g I o S T e T B o B o B B o I o S S 2 T o B o BN

root:

leaf:

child:
parent:
sibling:
grandparent
grandchild:

ancestor:
descendent:

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

More Tree Terminology
(S IS IR I IS o HE o IS IS IR o I IS TS o I IR s BN

path:
depth:

height:

degree:

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Implementation of Trees

* Trees can’t be implemented with lists (easily)
* Why not?

Naive Tree Implementation

If we can bound the degree of a tree’s nodes, it

has a simple implementation:
struct TreeNode {
oj ect dat a;
TreeNode *chi | d[MAX_DEGREE] ;

}s B

E/.,

General Tree Implementation

Since a tree can have any number of children...
— Parent links to first child

— Siblings link to one another
struct TreeNode {
oj ect dat a;
TreeNode *firstchild;
TreeNode *si bling;
b

Design Decision: Parent Pointer

* For most operations, only pointers to children
are needed

* Some implementations may also store a

pointer to a node’s parent:
struct TreeNode {

oj ect dat a;

TreeNode *parent; B

TreeNode *firstchild,

TreeNode *si bling;

«

};

Tree Operations

¢ Like List, not a well-defined ADT...

* Possible Operations

— Tree operations:
TreeNode *root();
TreeNode *find(Qbject);
— Node operations:
voi d addChi | d(Obj ect);
int nunChi l dren();
TreeNode *get Kt hChil d(int);
voi d del etekKthChild(int);

— Also traversal operations...

Well-defined Traversals

pre-order:
1) process node
2) process children

post-order:
1) process children

2) process node

Traversal Applications

® Print Directory Listing

www/

_—7"\

indexhtml handouts/ assignments/

* Print Disk Usage
Chl.ps hwlhtml hw2html

Tree Applications

* Storing data for the “real life instances of trees”

* CAD/drawing: Storing hierarchies of objects
(a wheel is made of a tire and spokes; a car is made...)

* graphics: Storing a scene’s geometry/structure
* languages: Storing a class hierarchy (e.g., C++)

Application: Storing Expressions

ali] = (b + c[i,j,k]) * pow(3,n);

array_ref

|functi on_cal | |

b a:r/ay_refl [pow
SOOH

Application: Al programs

Decision Trees:

“if I move”

here... there...

A
“then s/he “then s/he “then s/he
might move” might move” might move”

S o e v

