CSE 373: Queues

Chapter 3

Definition
(IS 2 I o IS o I I o S o I IS o IS o I o < S o B o S o S o < AN

Queue:

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Queue Operations

(I g I o S T e T B o B o B B o I o S S 2 T o B o BN

Main Operations:
voi d enqueue(Obj ect) ;
oj ect dequeue();
ohject front(); /1 or getFront();
bool isEmpty();
Other Operations:
— normal creation/deletion operations
— again, generally no iteration operations

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Queue Example

(I o o B o B o B o B o B o B o B o T o B o B o B o B o 2 BN
Queue Q

int frontval, newal;

Q enqueue(l);

Q enqueue(l);

for (i=2; i<n; i++) {
frontval = Q dequeue();
newal = frontval + Qfront();
Q enqueue(newal) ;

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

List-based Queue Implementation

» As with Stacks, Queues are a specialized List
—enqueue() =insert() ataspecific end of the list
— dequeue() =renove() from the opposite end
® Thus, Lists could be used to implement the
Queue ADT

— Similar advantages and disadvantages as the Stack
case

Array-Based Queue Implementation

Naive approach:
enqueue() =insert at end of array
dequeue() = delete from front of array

4:(2]3[7]h1

......

Running Time:
enqueue():
dequeue():
How could we improve this?

Link-Based Queue Implementation

What are the challenges to making a link-based
enqueue() and dequeue() efficient?

Evaluating Queue Implementations

List-based Array-based Link-Based

Operations:
enqueue()
dequeue()
front()

i sEnpty()

Space:

Other:

Applications of Queues

Anything where “fairness” (FIFO) is required

— operating systems: printer queues, storing user
input, servers, scheduling processes

compilers (and in general): worklists

graphics: queue of things to render

applications: list of recently used files

real-life: lines at fast-food restaurants, “waiting for
next available operator” lists

— searching: “breadth-first” searches

Introduction to Templates

The point:
— Lists, Stacks, and Queues are examples of ADTs
that can store an arbitrary data type
(eg.,Li st ofintegers,List ofdoubl es, Li st of
strings)
— The implementation of these ADTs” operations is
independent of the data type
(eg.,insert () /del et e() didn't care which type of Li st)
— Templates support this separation of operation
implementation and base type

Using Templates
(S IS IR I IS o HE o IS IS IR o I IS TS o I IR s BN

declaration: tenpl ate <cl ass Obj ect >
class List {
private:
Li st Node<(hj ect > *head;
Li st Node<(hj ect> *tail;
3
use: Li st <i nt > nyl nt Li st;

Li st <doubl e> nyDbl Li st ;
Li st<string> nyStrList;

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Compiling Templates

I I I i i e i I I e I i e e N

#i f ndef LIST H # nclude “Tist.h”
#define _LIST_H_)))
tenpl ate <cl ass Object > Li st<int> nylntList;
class List { Li st <doubl e> myDbl Li st;
-} void main() {
#i nclude “list.cpp”
#endi f 1 :
TEh main.cpp
(bj ect Li st <oj ect>: : Remove() { My Project
o} .
mal n. cCpp
voi d List<Object>:: Add(hject x) {
.} (not list.cppt)
list.cpp

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

