CSE 373: Stacks

Chapter 3

Definition
(IS 2 I o IS o I I o S o I IS o IS o I o < S o B o S o S o < AN

Stack:

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Stack Operations
e e R e e B e e R RE R e B e Y
Main Operations:
voi d push(oj ect);
vj ect pop();
Obj ect top();
bool isEnpty();

Other Operations:
— normal creation/deletion operations
— generally no iteration operations (why?)

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

Stack Example
(S IS IR I IS o HE o IS IS IR o I IS TS o I IR s BN

St ack<int> S;
int topval, newal;

S. push(1);
S. push(1);
for (i=2; i<n; i++) {
topval = S.pop();
newal = topval + S.top();
S. push(topval);
S. push(newal) ;

UW, Autumn 1999 CSE 373 — Data Structures and Algorithms Brad Chamberlain

List-based Stack Implementation

* Stacks are a specialized type of list
— push() =insert() ata specific end of the list
— pop() = renove() restricted to the same end
® Thus, Lists could be used to implement the
Stack ADT

— Advantages?
— Disadvantages?

Array-based Stack Implementation

e Recall: what were the best/worst cases for
I nsert()/renove() on array-based Lists?

4:(2]3]7 11

......

* This implies a straightforward and efficient
array implementation of Stacks
— Advantages?
— Disadvantages?

Link-based Stack Implementation

® Recall:1 nsert () and renove() are cheap for
link-based Lists once we locate the node that
points to the new /old node

»

2

Ll

3

> 5

¢ What Link-based implementation of Stacks

does this suggest?

— Advantages?
— Disadvantages?

Evaluating Stack Implementations

List-based

Operations:

push()
pop()
top()

i SEnpty()

Space:

Other:

Array-based

Link-Based

Applications of Stacks

* compilers: to represent scoped properties of languages
int a,
void (int x, int y) {
int z;

int a,b;
i
int z;
}
}

¢ graphics: managing coordinate transformations
(e.g., OpenGL)
* applications:
(hint: you probably use one every time you use a Microsoft product)

Application: Function Call Stacks

void fact(int n) {

..fact(n-1) ...

}

void fow (int z) {
..cout << z ..

}

void fish(int x,y) {
..fow (x) ...
..fact(y) ..

}

void main() {
...Tish(3,5) ..

}

Application: Searching

Use a Stack to track where you’ve been:
e.g., FillPaint():
¢ each element stores (x,y) & last direction we’ve tried
¢ assume we always search directions in a certain order

- eg,N,ESW

(3 6) N 3I4|5I6|7I_
’ , AN

(3,5 E s| DB

(3,4) E 4 | B

(4.4) N JEEEEE

Avoiding Calls to new

¢ Although newand del et e have O(1) cost, the
constant can be large enough that you want to
avoid it
* One idea:
— rather than calling del et e on nodes, store them in
a list
— Then, before calling new, check to see if you can
grab a node from the list instead

