CSE 373: Introduction

Chapter 1

Math Review

- Things to review on your own (§1.2.1–1.2.5)
 - exponents
 - logarithms
 - series
 - modular arithmetic
 - proof techniques

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Brad's Take on Logarithms

- Understanding $\log_h x$
 - textbook definition: $\log_b x = y \implies b^y = x$ ($\log_b x$ is the power to which b must be taken to get x)
 - more useful: $\log_b x$ is the number of times you must divide x by b to get 1

 2^3 : $\log_2 8 = 3$

 $\log_2 4 = 2$

 $\log_2 2 = 1$

 $\log_2 1 = 0$

• *b* is almost always 2 and omitted by default

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Brad's Take on Series I

 $1 + 2 + 3 + 4 + \dots + n = ?$

Mathematically:

=

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Brad's Take on Series I (cont'd)

$$1 + 2 + 3 + 4 + \dots + n = ?$$

Geometrically:

=

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Brad's Take on Series II

$$1 + 2 + 4 + 8 + \dots + n/2 + n = ?$$

Geometrically:

=

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

C++ Review

- Classes:
 - constructors/destructors
 - separation of interface and implementation
 - vector and string classes
- Pointers
- Dynamic memory allocation: new, delete
- Parameter passing, return values
- Templates (we'll cover briefly in class)

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Recursion

Recursive function: A function that calls itself

– Analogous to recurrence relations in math:

0! = 1 fact(0) = 1

 $x! = x \cdot (x-1)!$ fact(x) = x · fact(x-1)

- Recursively in C++:

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Disadvantages of Recursion

- Function calls are *expensive*:
 - take more time than standard operations
 - require memory proportional to the call depth
- Simple cases can be rewritten with loops:

```
int fact(int x) {
   if (x == 0) {
      return 1;
   } else {
      return x * fact(x-1);
   }
}

return product;

return product;
}
```

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Recursion II

Fibonnaci Numbers:

$$\begin{aligned} & \text{fib}_0 = 1 \\ & \text{fib}_1 = 1 \\ & \text{fib}_x = \text{fib}_{x-1} + \text{fib}_{x-2} \end{aligned}$$

• Recursively in C++:

```
int fib(int x) {
```

}

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Disadvantages of Recursion II

- Elegance disguises redundant computation
- What is the call chain like for fib(5)? fib(10)?

• Does **fib()** have a simple iterative rewrite?

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Recursion III

void PaintFill(int pixel[][],int x,int y);

- pixels are either black (1) or white (0)
- starting at pixel (x,y) change white pixels to black, stopping at boundaries

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Recursion III (continued)

void PaintFill(int pixel[][],int x,int y){

}

Does **PaintFill()** have an iterative rewrite?

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Recursion Summary

- Recursive routines must:
 - have a base case
 - always make progress towards the base case
- Be sure to keep an eye out for:
 - recursive calls that have simple iterative rewrites
 - redundant computation

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Inductive Proofs

Inductive proof – A way to prove a property true for an infinite number of (enumerable) cases

- prove property true for base case(s)
- assume it's true for the first k-1 instances, and use them to prove it's true for the kth instance

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Simple Inductive Proof

Prove: Every complete binary tree of depth d contains 2^{d+1} - 1 nodes

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Simple Inductive Proof (cont'd)

Proof (by induction):

- Let P(i) = "A complete binary tree of depth i contains 2^{i+1} 1 nodes"
- We must prove P(i) true for all i ≥ 0
- *base case:* Prove P(0) is true

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

Simple Inductive Proof (cont'd)

Proof (continued):

- *inductive step*: Assuming P(0), P(1), ..., P(k-1) are true, prove P(k) is true

– Therefore, for all $i \ge 0$, P(i) is true

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms

Induction and Recursion

Induction and Recursion are analogous concepts

- both use base cases
- both solve "big" problems based on the assumption that "smaller" problems are solved in a similar way
- both require that you assume the recursive/ inductive step works without checking every case
- both have similar pitfalls
 - determining the number of base cases
 - handling the base case(s) correctly
 - getting the inductive step to work for all non-base cases

UW, Autumn 1999

CSE 373 - Data Structures and Algorithms

Brad Chamberlain

An Incorrect Inductive Proof

Prove: When *h* horses are within a fenced area, they are all the same color

Proof (by induction):

- Let P(i) = "when i horses are within a fenced area, they are all the same color"
- base case: when 1 horse is in a fenced in area, it is the same color as itself. Therefore, P(1) is true.
- inductive step: Assume P(1), P(2), ..., P(k-1) are true.
 - Consider k horses in a fenced-in area.
 - Lead one of the horses, a, out of the area such that k-1 horses remain. Since P(k-1) is true, the remaining horses must all be the same color.
 - Now lead a back in and lead a different horse, b, out, once again leaving k-1 horses within the fence. Since P(k-1) is true, these horses must also all be the same color.
 - Since both subsets of k-1 horses were the same color, a and b must be the same color, and therefore all k horses must be the same color
 - Therefore $P(1), ..., P(k-1) \Rightarrow P(k)$ is true

UW, Autumn 1999

CSE 373 – Data Structures and Algorithms