CSE 373: Data Structures and Algorithms

UW, Autumn 1999

CSE 373: Data Structures and Algorithms

Brad Chamberlain
University of Washington
Autumn 1999

http://www.cs.washington.edu/education/courses/cse373/99au/

(S I o IHE o IHE S o I I BHE g BHE IS S IRE o IHE o IHE o BhY

What is a Data Structure?

data structure —

Brad Chamberlain

CSE 373: Data Structures and Algorithms

UW, Autumn 1999

Observation

* Data is an attribute common to all programs
— programs process, manipulate, store, display, gather
— data may be information, numbers, images, sound
* Each program must decide how to store data
* Choice influences program at every level:
— execution speed
— memory requirements
— maintenance (debugging, extending, etc.)

Course Goals

e To introduce several standard data structures
e To teach how data structures are evaluated

e To determine when each data structure is
useful

* To give you the ability to design, build, and
evaluate your own data structures

Brad Chamberlain

CSE 373: Data Structures and Algorithms

UW, Autumn 1999

What about Algorithms?

algorithm — a description of a process useful for
completing a specific task

Algorithms are often closely tied to the selection
of a data structure (in this class anyway)

C++ Data Types

* basic types:

— char,int,doubl e, etc.

— pointers (e.g., char *,int *,double *)
* compound types:

— arrays (e.g., i nt [26],doubl e [100] [100])
— structures (e.g., struct vector {

int Xx,y;

doubl e | en;

)

— classes (e.g., cl ass point { private: ...};)

Brad Chamberlain

CSE 373: Data Structures and Algorithms

UW, Autumn 1999

t ypedef
typedef
t ypedef

t ypedef

Building Data Structures

char nane[32];

enum { ACMS, ECON, EE, NMATH, PREMAJ} dept;

struct _student {
nane first, |ast;
int UWD,
nane email ;
dept mgj or;
int year;

} student;

student course[80];

Data Structure cour se

course cse373;

'-.Cher yl

Judy Charlie |Heidi Dawn
Chow Ni cast r o| Chong Wlls Mason
9625413 |9824331 | 9615423 | 9831429 | 9716423 etc.
cchow ni castro|cchong hei diw | dnason
ECON ACMVB ACNVG PRENVAJ ECON
4 2 4 2 3
0 1 2 3 4

Brad Chamberlain

CSE 373: Data Structures and Algorithms

UW, Autumn 1999

Abstract Data Types (ADTs)

abstract data type —

Is the cour se type an ADT?

Example: Fi ndMaj or ()

voi d Fi ndMpj or (cour se, dept) ;
— takes a course and a department as arguments
— prints all students taking the course in that major

How would Fi ndMaj or () be implemented for
our current cour se implementation?

Could changing cour se improve the
performance of Fi ndVaj or () ?

Brad Chamberlain

CSE 373: Data Structures and Algorithms

UW, Autumn 1999

ADT Tensions

Ideal: a fast, elegant ADT that uses little memory

Generates tensions:
— time vs. space
— performance vs. elegance
— generality vs. simplicity
— one operation’s performance vs. another’s

Another Example

¢ Spring registry ADT for UW — stores which
students are taking which courses

* Supported operations:
i nt Taki ngCourse(int UWND,int SLN);
¢ tells if the student is taking the course specified by SLN
void PrintSchedul e(int UWND);
¢ prints the schedule of the student
cour se MakeCourselList(int SLN);
¢ creates a cour se type for the given SLN

Brad Chamberlain

CSE 373: Data Structures and Algorithms

UW, Autumn 1999

A Naive Implementation

const int numcourses = 7000;
const int numstudents = 33000;

typedef int registry[numstudents][num courses];
0

num_students

0 num_courses

Evaluating this Implementation

What are the advantages of this implementation?

What are the disadvantages?

How could we improve the implementation?

Brad Chamberlain

CSE 373: Data Structures and Algorithms

UW, Autumn 1999

The Myth of ADTs

Not a perfect black box:

— knowing how an ADT will be used can lead to a
good choice of implementation

— also, knowledge of an ADT’s implementation may
change how a client uses it

But... ADTs are still a useful concept

Use motivates design

Todo

* Look over class web page

* Join class e-mail list (see web page for details)
* Find MSCC PC Lab and try logging in

* Read chapters 1 and 2 of the textbook

Brad Chamberlain

