
Section 02: Asymptotic Analysis

Section Problems

1. Comparing growth rates

(a) Simplify each of the following functions to a tight big-O bound in terms of n. Then order them from fastest
to slowest in terms of asymptotic growth. (By “fastest”, we mean which function increases the most rapidly
as n increases.)

• log4(n) + log2(n)
•

n

2
+ 4

• 2n + 3
• 750, 000, 000
• 8n+ 4n2

(b) Order each of thesemore esoteric functions from fastest to slowest in terms of asymptotic growth. (By “fastest”,
we mean which function increases the most rapidly as n increases.) Also state a simplified tight O bound for
each.

• 2n/2

• 3n

• 2n

2. True or false?

(a) In the worst case, finding an element in a sorted array using binary search is O (n).

(b) In the worst case, finding an element in a sorted array using binary search is Ω(n).

(c) If a function is in Ω(n), then it could also be in O
(
n2

)
.

(d) If a function is in Θ(n), then it could also be in O
(
n2

)
.

(e) If a function is in Ω(n), then it is always in O (n).

3. Code to summation

For each of the following code blocks, give a summation that represents the worst-case runtime in terms of n.

(a)

int x = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

x++;

}

}

1



(b)

int x = 0;

for (int i = n; i >= 1; i /= 2) {

x += i;

}

4. Code modeling

For each of the following code blocks, construct a mathematical function modeling the worst-case runtime of the
code in terms of n. Then, give a tight big-O bound of your model.

(a) int x = 0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < n * n / 3; j++) {

x += j;

}

}

(b) int x = 0;

for (int i = n; i >= 0; i -= 1) {

if (i % 3 == 0) {

break;

} else {

x += n;

}

}

(c) int x = 0;

for (int i = 0; i < n; i++) {

if (i % 5 == 0) {

for (int j = 0; j < n; j++) {

if (i == j) {

x += i * j;

}

}

}

}

(d) int x = 0;

for (int i = 0; i < n; i++) {

if (n < 100000) {

for (int j = 0; j < n; j++) {

x += 1;

}

} else {

x += 1;

}

}

2



(e) int x = 0;

if (n % 2 == 0) {

for (int i = 0; i < n * n * n * n; i++) {

x++;

}

} else {

for (int i = 0; i < n * n * n; i++) {

x++;

}

}

5. Applying definitions

For each of the following, choose a c and n0 which show f(n) ∈ O(g(n)). Explain why your values of c and n0

work.

(a) f(n) = 3n+ 4, g(n) = 5n2

(b) f(n) = 33n3 +
√
n− 6, g(n) = 17n4

(c) f(n) = 17 log(n), g(n) = 32n+ 2n log(n)

6. Using our definitions

Most of the time in the real world, we don’t write formal big-O proofs. The point of having these definitions is
not to use them every single time we think about big-O. Instead, we use the formal definitions when a question is
particularly tricky, or we want to make a very general statement.

Here are some particularly tricky or general statements that are easier to justify with the formal definitions than
with just your intuition.

(a) We almost never say a function is O (5n), we always say it is O (n) instead. Show that this transformation is
ok, i.e. that if f(n) is O (5n) then it is O (n) as well.

(b) When we decide on the big-O running time of a function, we like to say that whatever happens on small
n doesn’t matter. Let’s see why with an actual proof. You write two functions to solve the same problem:
method1 and method2. method1 takes O

(
n2

)
time and method2 takes O (n) time. What is the big-O running

time of the following function:

public void combined(n){

if(n < 10000)

method1(n);

else

method2(n);

}

7. Memory analysis

For each of the following functions, construct a mathematical function modeling the amount of memory used by
the algorithm in terms of n. Then, give a tight big-O bound of your model.

3



(a) List<Integer> list = new LinkedList<Integer>();

for (int i = 0; i < n * n; i++) {

list.insert(i);

}

Iterator<Integer> it = list.iterator();

while (it.hasNext()) {

System.out.println(it.next());

}

(b) int[] arr = {0, 0, 0};

for (int i = 0; i < n; i++) {

arr[0]++;

}

(c) ArrayDictionary<Integer, String> dict = new ArrayDictionary<>();

for (int i = 0; i < n; i++) {

String curr = ””;

for (int j = 0; j < i; j++) {

for (int k = 0; k < j; k++) {

curr += ”?”;

}

}

dict.put(i, curr);

}

Note 1: For simplicity, assume the dictionary has an internal capacity of exactly n.

Note 2: The amount of memory used by a single character (c) and the amount of memory used by a single
int (x) are both constant.

Note 3: An ArrayDictionary stores its key-value pairs contiguously, and performs scans through (potentially)
the entire data structure when performing an insert() or a find().

8. Case and Asymptotic Analysis

(a) What is the BEST case runtime of the following code? What is the case in which it happens?

void foo(int n) {

int result = 0;

if (n % 2 == 0) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {

result++;

}

}

} else {

for (int i = 1; i < n; i*=2) {

result++;

}

}

return result;

}

(b) What is the Big-Theta runtime of the code above? (Hint: What are the Big-O and Big-Omega runtimes?)

4



(c) What is the WORST case runtime for the following function? In what case?

public class ArrayIntList {

private int size;

private int arr;

public void foo(int val) {

size++;

if (size >= arr.length) {

temp = new int[arr.length * 2];

for (int i = 0; i < size; i++) {

temp[i] = arr[i];

}

temp[size] = val;

this.arr = temp;

} else {

arr[size] = val;

}

}

}

(d) What is the WORST case Big-O runtime? Give only the TIGHTEST Big-O bound possible.

// assume 0 <= n < arr.length

int foo(int n, int[] arr) {

if (n < 1000) {

for (int i = 0; i < n * n; i += 4) {

arr[i] = n;

}

} else if (n > 50000) {

arr[n] = 65;

} else {

int x = 1000000

while (x > 50) {

x /= 2;

}

}

return arr[n];

}

(e) What is the BEST case runtime for this problem? What is the WORST case?

// n == arr.length

boolean find(int[]arr, int n, int k) {

for(int i=0; i < n; ++i)

if(arr[i] == k) return true;

return false;

}

5


	1 Comparing growth rates
	2 True or false?
	3 Code to summation
	4 Code modeling
	5 Applying definitions
	6 Using our definitions
	7 Memory analysis
	8 Case and Asymptotic Analysis

