
CSE 373: 24 Wi Midterm Solutions

 Name: Mr. Meow Meow ​ UW Email: Should NOT be a number @uw.edu

Instructions

●​ The allotted time is 50 minutes. Please do not turn the page until the staff says to do so.

●​ This is an open-book and open-notes exam. You are NOT permitted to access electronic

devices including calculators.

●​ Read the directions carefully, especially for problems that require you to show work or provide

an explanation.

●​ We can only give partial credit for work that you’ve written down.

●​ Unless otherwise noted, when we ask for algorithm runtime, it must be simplified and tight.
●​ You may assume that all hash functions and operations (find, add, remove) are O(1).
●​ If you run out of room on a page, indicate where the answer continues. Try to avoid writing on

the very edges of the pages: we scan your exams and edges often get cropped off.

Advice
●​ If you feel like you’re stuck on a problem, you may want to skip it and come back at the end if

you have time.

●​ Relax and take a few deep breaths. You got this :-)

Questions

1. ADT Design

2. Code Analysis

Resubmission Details

●​ This exam will be graded out of 100 points. If you are not satisfied with your grade, you will be

given the opportunity to resubmit it online and earn up to 50% of the missed points back.

●​ For example, a student scoring 80/100 points may receive up to 90/100 points on the

resubmission.

Problem 1 (ADT Design):
Kasey and her TAs are starting up a new grocery store business called Trader O’s. They need to keep
track of the prices of products in their store. Each product has a unique UPC code and a unique
price. They want to write a program to get the price of a product by scanning its UPC code.

Their program will need the following functionality:

●​ void addProduct(String UPCCode, double price)

○​ adds a product to the database with the given UPCCode and price
○​ if the UPCCode already exists in the database, only update the price

●​ double find(String UPCCode)
○​ returns the price of the product with the given UPCCode
○​ returns -1 if the UPCCode is not found

Azita, Eesha, and Simon each came up with solutions. They all use the fastest possible algorithms
with their choices of data structures.

Simon’s Solution: We can store (UPCCode, price) pairs in a sorted ArrayList (the array will be sorted
in ascending order by UPC code).

1)​ What is the worst-case, simplified, tight big-oh runtime of addProduct?

O(n). You have to shift elements in the worst case.

2)​ What is the worst-case, simplified, tight big-oh runtime of find?

O(log n). Binary search.

Eesha’s Solution: We can store (UPC, price) nodes in an AVL Tree.

3)​ What is the worst-case, simplified, tight big-oh runtime of addProduct?

O(log n)

4)​ What is the worst-case, simplified, tight big-oh runtime of find?

O(log n)

Azita’s Solution: We can store (UPC, price) pairs in a HashMap.

5)​ What is the in-practice, simplified, tight big-oh runtime of addProduct?

O(1)

6)​ What is the in-practice, simplified, tight big-oh runtime of find?

O(1)

1

Some of Kasey’s students heard about the success of Trader O’s and are planning on getting their
groceries there. However, since they are broke college students, they want to get the most bang for
their buck when buying Trader O’s groceries. To help out her students, Kasey decides to add the
following method to her ADT:

-​ List<String> getPurchasableProducts(double money)
-​ returns the UPC codes of all products in the store with price ≤ money

Kasey wants her program to optimize for the getPurchasableProduct operations. However, she
still wants to maintain a relatively quick runtime for addProduct and find. You are asked to design
your own implementation of this ADT:

7) Describe what data structures you’ll use and what they represent (≤ 3 sentences).

A Hashmap that maps from UPC code to the price of the corresponding product.

Note: you did not have to include any words beyond this, but for the sake of completion, this will
still enable relatively quick runtime for addProduct and find, as shown in 5) and 6). The
worst-case input for getPurchasableProducts is if all prices were below money, so any
correct algorithm has to run in Ω(n) time in the worst-case. It is not possible to achieve O(log n)
worst-case runtime for getPurchasableProducts.

Another note: An AVL tree gives you little to no advantage for this problem because of the
worst-case input described above. If you only had one AVL tree and your keys were prices, you
may have not received full points for this part. This is because find() will be slow, since UPC
codes are no longer keys. But we accepted solutions that used UPC code as the key instead.

8) Describe your implementation of getPurchasableProducts (≤ 3 sentences).

Initialize an empty list to store the result. Iterate over the key-value pairs in the HashMap. For
each price that is at most money, insert the corresponding UPC code into the list, then return the
resulting list.

Note: If you used an AVL tree with price as key, it is not correct to only consider the left subtree if
the node’s price falls below money. There could still be nodes on the right subtree with price
below money. We accepted solutions that naively iterated over the entire tree.

9) Give the worst-case, simplified, tight big-oh runtime of your solution to getPurchasableProducts.
 Use in-practice runtime for any HashMaps, no explanation necessary.

O(n).

2

Problem 2 (Code Analysis):

Yafqa wants his students to participate more in section, so he thinks to himself, “it would be nice if I had
a random name generator to randomly call on students”. He wants to design an ADT called
“RandomizedSet” with the following functionalities:

●​ boolean insert(String name)
○​ inserts a name to the set
○​ returns true if the size of the set has increased, false otherwise

●​ boolean remove(String name)
○​ removes a name from the set
○​ returns true if the set contained the name, false otherwise

●​ String pick()
○​ randomly chooses a name from the set and returns it
○​ returns null if the set is empty
○​ each name should have an equal chance of being picked

●​ int size()
○​ returns the number of elements in the set

Here’s an example of how Yafqa might use such a program:

 List<String> students = List.of("Simon", "Josh", "Sravani", "Emily", "Azita");
 RandomizedSet picker = new RandomizedSet();
 for (String student : students) {
 picker.insert(student);
 }

 List<String> shuffledStudents = new ArrayList<>();
 while (picker.size() != 0) {
 String nextStudent = picker.pick();
 shuffledStudents.add(nextStudent);
 picker.remove(nextStudent);
 }

 System.out.println(shuffledStudents);

 // output:
 // [Sravani, Azita, Simon, Emily, Josh]

3

Here is Yafqa’s first implementation of this ADT.​

public class RandomizedSet {
 private List<String> names;
 private Random r; // assume r.nextInt(...) is O(1).

 public RandomizedSet() {
 names = new LinkedList<>(); // assume this is singly-linked
 r = new Random();
 }

 public boolean insert(String name) {
 if (names.contains(name)) {
 return false;
 }
​

 names.add(0, name);
 return true;
 }

 public boolean remove(String name) {
 Iterator<String> itr = names.iterator();
 while (itr.hasNext()) {
 if (itr.next().equals(name)) {
 itr.remove();
 return true;
 }
 }
 return false;
 }

 public String pick() {
 if (size() == 0) {
 return null;
 }

 int index = r.nextInt(size());
 return names.get(index);
 }

 public int size() {
 return names.size();
 }
}

Give the worst-case, simplified, tight big-oh runtime of the above implementation for the following methods​

1) insert:

O(n)

2) remove:

O(n)

3) pick:

O(n) (it’s a linked list)

4

Here is Yafqa’s second implementation of this ADT.

public class RandomizedSet {
 private Set<String> values;
 private Random r; // assume r.nextInt(...) is O(1).

 public RandomizedSet() {
 values = new HashSet<>(); // assume this is singly-linked
 r = new Random();
 }

 public boolean insert(String value) {
 if (values.contains(value)) { return false; }
 values.add(value);
 return true;
 }

 public boolean remove(String value) {
 if (!values.contains(value)) { return false; }
 values.remove(value);
 return true;
 }

 public String pick() {
 if (size() == 0) { return null; }
 int index = r.nextInt(size());
 Iterator<String> itr = values.iterator();
 for (int i = 0; i < index; i++) {
 itr.next();
 }
 return itr.next();
 }

 public int size() {
 return values.size();
 }
}

Give the in-practice, simplified, tight big-oh runtime of the above implementation for the following methods​
​

1) insert:

O(1)

2) remove:

O(1)

3) pick:

O(n)

5

Yafqa isn’t satisfied with either implementation. He thinks he should be able to achieve O(1) time on all
operations in-practice, using some combination of data structures. Describe how you might do this
below:

1)​ Describe what data structures you’ll use and what they represent (≤ 5 sentences).

2)​ Describe your implementation of insert (either plain english (≤ 3 sentences) or pseudocode).

Return false if the String is already contained in the hashmap. Otherwise, insert the String at
the end of the list, and add the corresponding (String, index) pair into the map.

6

One possible solution:
Use an ArrayList containing the Strings. The Strings in the list are contiguous, i.e. there are no
gaps in between Strings. Also use a HashMap mapping from a String to its corresponding
index into the ArrayList.

Note: Several solutions discussed implementing a modified hash set from scratch, complete
with explanations on how they would use the chains, buckets, etc. While you can get efficient
insert and remove out of this (because it’s a hash set), it is difficult to give a correct and
efficient implementation of pick due to gaps in between buckets. If you keep randomly
choosing buckets until you hit an empty bucket, your program may never terminate. Even if
you manage to get to a non-empty bucket, how would you ensure that all keys are chosen
uniformly? Some buckets could have 2 elements, others could have 1,000,000. You are much
more likely to get a particular element in a chain of length 2 than a particular element in a chain
of length 1,000,000.

3)​ Describe your implementation of remove (either plain english (≤ 3 sentences) or pseudocode).

Return false if the String is not contained in the HashMap. Otherwise, lookup the index of the
String to remove. Take the last String in the list and move it to this index, update the last
String’s index in the hashmap, then remove the given String from the map.

Note: there are small details you would need to include for a fully correct algorithm, like
updating the size of the list, returning true at the end, handling the edge case where the last
String should be removed, etc. We were only looking for a high-level algorithm and did not
look for these details when grading. The important steps are included in the solution above.

4)​ Describe your implementation of pick (either plain english (≤ 3 sentences) or pseudocode).

Same as Yafqa’s first implementation, but using the ArrayList described above instead of a
LinkedList.

7

	CSE 373: 24 Wi Midterm Solutions
	
	 Name: Mr. Meow Meow ​ UW Email: Should NOT be a number @uw.edu

