
CSE 373: 24 Wi Makeup Midterm

 Name: UW Email: @uw.edu

Instructions

● The allotted time is 50 minutes. Please do not turn the page until the staff says to do so.

● This is an open-book and open-notes exam. You are NOT permitted to access electronic devices

including calculators.

● Read the directions carefully, especially for problems that require you to show work or provide an

explanation.

● We can only give partial credit for work that you’ve written down.

● Unless otherwise noted, when we ask for algorithm runtime, it must be simplified and tight.

● You may assume that all hash functions and operations (find, add, remove) are O(1).

● If you run out of room on a page, indicate where the answer continues. Try to avoid writing on the very

edges of the pages: we scan your exams and edges often get cropped off.

Advice

● If you feel like you’re stuck on a problem, skip it and come back at the end if you have time.

● Relax and take a few deep breaths. You got this :-)

Questions

1. ADT Design

2. Code Analysis

Resubmission Details

● This exam will be graded out of 100 points. If you are not satisfied with your grade, you will be given

the opportunity to resubmit it online and earn up to 50% of the missed points back.

● For example, a student scoring 80/100 points may receive up to 90/100 points on the resubmission.

Jiali Zhang
Should be a name

Jiali Zhang
Should NOT be a number

Problem 1 (ADT Design):

Yafqa cooks a lot, but is always running out of spices! To keep better track of how much of each spice he still

has left, he wants to design a program to represent his spice cabinet.

Each spice will be identified by its name (a String), and will be associated with a percentage, which is a double

between 0.0 and 100.0 representing the amount of the spice still remaining.

The program should have the following functionality:
- void stockSpice(String spiceName)

- adds a new spice to the cabinet, or restocks an existing spice, setting the percentage to 100.0
- int getStock(String spiceName)

- returns the percentage of the spice left

- throws NoSuchElementException if the spice is not contained in the cabinet

- void useSpice(String spiceName, double percentage)

- consumes the spice specified, reducing the supply by the given percentage

- throws NoSuchElementException if the spice is not contained in the cabinet

- throws IllegalArgumentException if the given percentage exceeds the current

amount of the spice left
- List<String> needRestock()

- returns a list of all the spices that have less than 10.0 percent supply remaining

Jaylyn, Parker, and Joshua have each come up with a solution to this problem. For each of their solutions, you

will be asked to provide the tight Big-Oh runtime of the specified methods. Use n to denote the number of

spices in the spice cabinet.

Assume Yafqa is always careful and never has more than 5 spices that need to be restocked. Pay CAREFUL

attention to what the KEYS are in each solution.

1

Jaylyn’s Solution:

We can store (spiceName, percentage) pairs in a hash table, where the keys are the spice names.

1) What is the in-practice, tight Big-Oh runtime of stockSpice?

2) What is the in-practice, tight Big-Oh runtime of needRestock?

Parker’s Solution:

We can store (percentage, spiceName) pairs in an ArrayList that is sorted by the percentage.

3) What is the worst case, tight Big-Oh runtime of useSpice?

4) What is the worst case, tight Big-Oh runtime of needRestock?

Joshua’s Solution: We can store the data in an AVL Tree, where the keys are percentages and the values are

ArrayLists of spice name(s) that are currently stocked at that percentage.

5) What is the worst case, tight Big-Oh runtime of getStock?

6) What is the worst case, tight Big-Oh runtime of needRestock?

Yafqa buys his spices in bulk, and doesn’t need to restock very often. His top priority is to quickly use his

multitude of spices while cooking. In other words, he wants his useSpice operation to be as fast as possible.

7) Which of Jaylyn’s, Parker’s, or Joshua’s solutions would be most optimized for this scenario, and why?

Explain your answer in at most 2 sentences.

2

Jiali Zhang
O(1)

Jiali Zhang
O(n)

Jiali Zhang
O(n)

Jiali Zhang
O(1)

Jiali Zhang
O(n)

Jiali Zhang
O(logn)

Jiali Zhang
Jaylyn’s solution is the most optimized because the runtime of useSpice() function is O(1) as updating the value(percentage) in a hash table requires constant time.

Both Parker’s and Joshua’s solutions have a runtime of O(n) for useSpice() since they require searching through the entire list/tree to locate the corresponding spice and update its value.

Yafqa is very satisfied with his spice cabinet, until one day, he notices that Simon also has a spice cabinet, but

Simon’s spice cabinet can perform all of its operations in O(1) time! (Note: Simon is also careful and never has

more than 5 spices low on stock.)

Yafqa thinks this can be achieved by using a combination of multiple data structures. Below, describe how you

might achieve an in-practice O(1) runtime on all operations (stockSpice, getStock, useSpice, and

needRestock).

8) What data structures would you use, and what would they represent? Explain in at most 3 sentences.

9) Describe your implementation of stockSpice, getStock, and useSpice (either plain English or

pseudocode). If the three methods have similar implementations, you can describe them together. If

not, describe the implementations individually. Explain in at most 6 sentences.

10) Describe your implementation of needRestock (either plain English or pseudocode). Explain in at

most 4 sentences.

3

Jiali Zhang
1. spicesMap: A HashMap that maps spiceName to percentage.
2. lowStockSpices: A LinkedList that stores all the low-stock spiceNames.

Note: There are multiple valid implementations; for example, lowStockSpices can also be an ArrayList.

Jiali Zhang
stockSpice:
Add/Update the given spiceName in the spicesMap with the key-value pair: (spiceName, 100). If lowStockSpices list contains the given spiceName, remove it from the list.

getStock:
Retrieve the percentage of the specified spiceName directly from the spicesMap

useSpice:
Update the percentage of the specified spiceName in the spicesMap. If the updated percentage is less than 10% and lowStockSpices list doesn’t contain this spiceName, add it to lowStockSpices list.

Jiali Zhang
Return lowStockSpices list

Problem 2 (Code Analysis):

Rachel has too many shoes, and can’t fit them all by her front door. Rachel wants a shoe rack by her front door

to store the shoes she wears most.

Rachel wants to design an object called ShoeRack. A ShoeRack has the following functionalities:

● ShoeRack(int n)

○ constructs an empty ShoeRack object that can fit at most n shoes

● boolean wearShoe(String shoe)

○ if shoe is on the ShoeRack, mark this interaction and returns true

■ shoe remains on the ShoeRack after it has been “worn”

○ if shoe is not on the ShoeRack, returns false

● String addShoe(String shoe)

○ adds the specified shoe to the ShoeRack

○ if n shoes are already on the rack, the new shoe will replace the shoe with the longest time

since interaction. Interaction is triggered either by calling wearShoe or addShoe.

○ returns the shoe that was replaced, or null if no shoe was replaced

Here’s an example of how Rachel would use the ShoeRack object:

// shoe rack has a capacity of 3 shoes
ShoeRack rack = new ShoeRack(3);
rack.addShoe("Doc Martens"); // returns null
rack.addShoe("Flip Flops"); // returns null
rack.addShoe("Air Force 1"); // returns null

// the rack now is completely full,
// with 3 shoes on it
rack.wearShoe("Doc Martens"); // returns true

// the shoe that was interacted with
// longest ago is “Flip Flops”
rack.addShoe("Hiking Boots"); // returns “Flip Flops”

// “Hiking Boots” have now replaced “Flip Flops”
// rack now contains “Hiking Boots”,
// “Doc Martens”, and “Air Force 1”
rack.wearShoe("Flip Flops"); // returns false

4

Rachel thinks of two implementations of the ShoeRack object.

Below is the first solution. Pay attention to comments.

public class ShoeRack {
 private int n;
 private int timestamp; // incremented each time a shoe is added or worn
 private Map<String, Integer> shoeToTimestamp;
 private TreeMap<Integer, String> timestampToShoe;

 public ShoeRack(int n) {
 if (n < 1) {
 throw new IllegalArgumentException("n must be at least 1");
 }
 this.n = n;
 timestamp = 1;
 shoeToTimestamp = new HashMap<>(); // constructs a HashMap
 timestampToShoe = new TreeMap<>(); // this is a self-balancing BST
 }

 public boolean wearShoe(String shoe) {
 if (!shoeToTimestamp.containsKey(shoe)) {
 return false;
 }

 int oldTimestamp = shoeToTimestamp.get(shoe);
 timestampToShoe.remove(oldTimestamp);
 timestampToShoe.put(timestamp, shoe);
 shoeToTimestamp.put(shoe, timestamp);

 timestamp++;
 return true;
 }

 public String addShoe(String shoe) {
 String replacedShoe = null;
 if (shoeToTimestamp.size() == n) {
 // gets the entry with the lowest timestamp
 // firstEntry() finds the smallest key in the BST
 Map.Entry<Integer, String> replacedEntry = timestampToShoe.firstEntry();
 int oldTimestamp = replacedEntry.getKey();
 replacedShoe = replacedEntry.getValue();

 timestampToShoe.remove(oldTimestamp);
 shoeToTimestamp.remove(replacedShoe);
 }

 timestampToShoe.put(timestamp, shoe);
 shoeToTimestamp.put(shoe, timestamp);

 timestamp++;
 return replacedShoe;
 }
}

5

Analyze the asymptotic runtime, as a function of n, of the methods in first implementation. If there is no

distinction between best and worst cases, provide the same answer to both cases.

Recall that n is the capacity of the ShoeRack, and not the number of shoes contained in it.

1) What is the best-case, simplified, tight big-oh runtime of wearShoe?

2) What is the worst-case, simplified, tight big-oh runtime of wearShoe?

3) What is the best-case, simplified, tight big-oh runtime of addShoe?

4) What is the worst-case, simplified, tight big-oh runtime of addShoe?

6

Jiali Zhang
O(1)

Jiali Zhang
O(logn)

Jiali Zhang
O(1)

Jiali Zhang
O(logn)

Below is Rachel’s second solution. Pay attention to comments.

public class ShoeRack {
 private int n;

 // front is most recent shoe, back is least recent shoe
 private Deque<String> shoeDeque;
 private Set<String> shoes;

 public ShoeRack(int n) {
 if (n < 1) {
 throw new IllegalArgumentException("n must be at least 1");
 }
 this.n = n;

 // this is a doubly-linked list implementation from project 1
 shoeDeque = new LinkedDeque<>();
 shoes = new HashSet<>();
 }

 public boolean wearShoe(String shoe) {
 if (!shoes.contains(shoe)) {
 return false;
 }

 //shoe guaranteed to be in deque
 Deque<String> temp = new LinkedDeque<>();
 String currShoe = shoeDeque.removeFirst();
 while (!currShoe.equals(shoe)) {
 temp.addFirst(currShoe);
 currShoe = shoeDeque.removeFirst();
 }
 while (!temp.isEmpty()) {
 shoeDeque.addFirst(temp.removeFirst());
 }
 shoeDeque.addFirst(currShoe);
 return true;
 }

 public String addShoe(String shoe) {
 String replacedShoe = null;
 if (shoes.size() == n) {
 replacedShoe = shoeDeque.removeLast();
 }
 shoeDeque.addFirst(shoe);
 shoes.remove(replacedShoe);
 shoes.add(shoe);
 return replacedShoe;
 }
}

7

Analyze the asymptotic runtime, as a function of n, of the methods in second implementation.

Recall that n is the capacity of the ShoeRack, and not the number of shoes contained in it.

5) What is the worst-case, simplified, tight big-oh runtime of wearShoe?

6) What is the worst-case, simplified, tight big-oh runtime of addShoe?

Rachel realizes she might be able to adjust her second ShoeRack implementation by directly accessing the

list nodes in shoeDeque. She modifies her implementation by changing the field shoes from a

HashSet<String> of shoes to a HashMap<String, Node<String>> of shoes mapped to their

respective nodes in shoeDeque. This way, whenever she has to update the “recency of interaction” of a

particular shoe, she can locate the node corresponding to the shoe through her hashmap, and update node

links accordingly.

7) Overall, is the asymptotic runtime of Rachel’s newest implementation better, worse, or neither,

compared to her second implementation? Assume that Rachel has public access to the fields in the

LinkedDeque. Also assume Rachel uses her modified data structures in the most efficient manner

possible. Justify your answer in at most 2 sentences.

8

Jiali Zhang
O(n)

Jiali Zhang
O(1)

Jiali Zhang
Better. By utilizing the map to locate the node in the deque, we don’t need to loop through the deque and find the shoe anymore. Therefore now it only takes O(1) instead of O(n) runtime to locate the shoe in the deque and reorder it to the front of the deque.

	CSE 373: 24 Wi Makeup Midterm
	
	 Name: UW Email: @uw.edu

