
CSE 373 23sp Practice Midterm Solutions

Question 1:
Here are the runtime comparisons for each method:

● pushSong
○ An array implementation would take O(n) time to shift values,

but a linked list would take O(1) time. We also don’t have to
resize a linked list.

● appendSong
○ An array would take O(1) amortized* time but a linked list would

take O(n) time because we don’t have a back pointer.
● popSong

○ Linked list would take O(1) time but an array would take O(n)
time for the same reasons as pushSong.

● removeSong
○ Both linked list and array would take O(n) time.

● shuffle
○ Array would take O(1) time, but linked list would take O(n) time

because we have to iterate through the songs.
● Play

○ Similar comparison as shuffle.

Overall, we see that a linked list can efficiently push and pop songs, but for
all other operations an array would be at least as fast. If we want a data
structure where we can play particular songs or pick random ones
frequently, an array would be the best choice.

*amortized means that, when we factor in resizing, the runtime of
appending a song would be constant if we averaged it across many
appends



Now let’s consider the same operations for a circular array:
● pushSong

○ A circular array would take O(1) time because we can just
decrement the front pointer. We still have to worry about
resizing, but the in-practice/amortized runtime is still O(1).

● appendSong
○ A circular array would take O(1) time in practice for reasons

similar to pushSong.
● popSong

○ A circular array would take O(1) time in-practice for similar
reasons as above.

● removeSong
○ Circular array would take O(n) time because we would have to

shift values.
● shuffle

○ Circular array would take O(1) time - just pick a random index
from front to back. You may have to do some extra math if the
front pointer was behind the back pointer, but it would still be
constant.

● Play
○ Circular array would take O(1) time.



Question 2:

What is the worst-case time complexity of insert()?

The runtime of insert is O(1). This is because we traverse down the
trie one character at a time, and each step takes a constant time
operation for creating a new node or retrieving an existing one from
the children map, with a maximum possibility of 100 steps (digits).
Since 100 is a constant factor in relation to n, we can say the runtime
analysis is O(1).

What is the worst-case time complexity of search()?

The runtime of search is O(1). This is because we traverse down the
trie one character at a time, and each step takes a constant time
operation for checking if the current character exists in the children
map, with a maximum possibility of 100 steps (digits). Since 100 is a
constant factor in relation to n, we can say the runtime analysis is
O(1).

What is the worst-case time complexity of findMatchingPrefix()?

The runtime of findMatchingPrefix is O(n). This is because in our
worst case scenario (if the prefix was an empty string), we would
hypothetically have to add all of the distinct phone numbers in our trie
to our list of elements, requiring some amount of constant work at
each element and for us to iterate through the entire data structure. In
our worst case scenario, all of the strings in our trie are at maximum
length and share no nodes, meaning we have to travel down 100
nodes n times, giving us a runtime of O(100 * n) which can simplify
down to O(n).



Which of the two solutions would be the best implementation of delete for
Simon’s current situation? Be sure to describe the tradeoffs between the
two implementations!

Both implementations have a worst-case runtime of O(1), since we
would need to find the node to delete either way, requiring us to
traverse down up to 100 nodes in the trie. Once we get to that node,
the first solution simply marks it as “false,” meaning that though the
node is functionally “irrelevant” data, it and all preceding non-storage
nodes “end” nodes would still persist and take up space. Method 2,
on the other hand, would “clean up” all non-useful nodes and actually
remove them from memory, which might potentially require us to
delete the entire chain of nodes we traversed down if no nodes in our
path are shared with a different phone number. In this case, we would
be traveling through 100 * 2 nodes (since go to the node and back to
the root), which is still a constant factor in relation to n. Therefore, for
Simon’s scenario, option 2 would be the best choice because we are
able to optimize the limited amount of space usage on Simon’s
phone.


