Priority Queues
Designing and analyzing priority queues.
Priority queues are a fundamental building block for many real-world algorithms. For instance, if we only need to show the first 10 autocomplete matches in a specific order, a priority queue can be more efficient than sorting the entire list of all matches. Or, if we’re implementing a map navigation algorithm, a priority queue allows dynamic updates to the next-shortest path as the algorithm discovers new roads. Or, if we’re designing a worldwide web analytics dashboard, a priority queue can track statistics like the accessibility of the most commonly-visited web pages.
In this project, we will compare 4 implementations of priority queues to build a web analytics dashboard for tracking the occurrence of Web Content Accessibility Guideline recommendations. By the end of this project, students will be able to:
- Design and implement multiple data structures to solve complex problems.
- Analyze and compare implementation runtime and behavior by writing tests.
In the next project, we’ll also use your priority queues as a building block for shortest paths.
What am I submitting at the end of this project?
Satisfactory completion of the project requires two Canvas submissions: one individual writeup and a link to your src/minpq
folder on GitLab that addresses all the green callouts in the Design and Implement section, and one video-recorded team presentation that addresses all the green callouts in the Analyze and Compare section. Remember to push all your project code to GitLab by the time you submit in Canvas.
The project instructions contain a lot of details to provide context, clarify common confusions, and help students get started. Your Canvas submisisons only need to address tasks that are described in green callouts like this one.
Priority queue interface
The MinPQ
interface represents a priority queue that affords access to minimum-priority elements. Priority values are extrinsic to each element: rather than relying on a compareTo
method, priority values are specified as arguments to the add
and changePriority
methods.
void add(E element, double priority)
- Adds an element with the given priority value if the element is not already in this priority queue.
boolean contains(E element)
- Returns true if the given element is in this priority queue.
E peekMin()
- Returns the element with the minimum priority value.
E removeMin()
- Returns and removes an element with the minimum priority value.
double getPriority(E element)
- Returns the priority value for the given element if it is present.
void changePriority(E element, double priority)
- Updates the given element’s associated priority value.
int size()
- Returns the number of elements in this priority queue.
peekMin
and removeMin
should throw a NoSuchElementException
if the priority queue is empty. getPriority
and changePriority
should throw a NoSuchElementException
if the element is not present.
The interface also defines two default methods that rely on implementations of the above methods.
void addOrChangePriority(E element, double priority)
- Adds an element with the given priority value if it is not already present. Otherwise, updates the priority value of the existing element.
if (!contains(element)) { add(element, priority); } else { changePriority(element, priority); }
boolean isEmpty()
- Returns true if this priority queue contains no elements. Returns whether
size() == 0
.
A MinPQ
cannot contain duplicate elements. However, different elements can have the same priority value. peekMin
and removeMin
may return any element with the minimum priority value.
Here’s a small example showing how to use the MinPQ
interface with the DoubleMapMinPQ
class included in the project. Try it out for yourself by creating a new class in IntelliJ with the following code in the main
method.
MinPQ<String> pq = new DoubleMapMinPQ<>();
pq.add("1", 1.0);
pq.add("2", 2.0);
pq.add("3", 3.0);
pq.add("4", 4.0);
pq.add("5", 5.0);
pq.add("6", 6.0);
// Call methods to evaluate behavior.
pq.changePriority("3", 0.0);
pq.changePriority("1", 7.0);
while (!pq.isEmpty()) {
System.out.println(pq.removeMin());
}
Why not just implement Java's PriorityQueue interface?
The java.util
standard library includes a binary heap PriorityQueue
class. Here are three reasons why we can’t implement Java’s PriorityQueue
class in this project.
PriorityQueue
is a class- We can’t implement the
PriorityQueue
class because it’s a class, not an interface. Although the Java developers designedSet
,Map
, andList
as interfaces, priority queues are so commonly associated with binary heaps that the Java developers broke the pattern and definedPriorityQueue
as a class. PriorityQueue
relies oncompareTo
- By default,
PriorityQueue
uses elements’compareTo
method to define the priority of an element. For example, the priority of the string “A” is less than “B” because “A” precedes “B” in the alphabet. This makesPriorityQueue
great for sorting objects, but not great for applications like shortest paths. PriorityQueue
disaffords changing priority value- The fact that
PriorityQueue
uses elements’compareTo
methods reveals a hidden disaffordance. To change the priority of an object inPriorityQueue
, we need to remove the element from the priority queue and then re-insert it. This workaround is not only inconvenient, but also inefficient and prone to bugs.
PriorityNode
Java collections typically only specify a single data type as in ArrayList<String>
. But a MinPQ
needs to keep track of each element as well as its associated priority value. We could do this by creating two lists: an ArrayList<T>
for elements and an ArrayList<Double>
for each element’s priority value. However, this approach requires us to ensure the state of both lists are always the same, which introduces additional complexity that makes the code harder to maintain and more brittle or susceptible to future bugs.
The PriorityNode
class includes two fields representing an element
together with its priority
value so that it can be used in a Java collection.
List<PriorityNode<String>> elements = new ArrayList<>();
elements.add(new PriorityNode<>("example", 0));
Two PriorityNode
objects are considered equal if and only if their elements are equal. Priority values are not checked for equality.
How will this property of PriorityNode equality help you implement MinPQ?
MinPQ
does not allow duplicate elements, but does allow duplicate priority values. When using Java collections such as a List
, methods like List.contains
or List.remove
will call the objects’ equals
method to check for equality. The following contains
call will return true
, and the remove
call will successfully remove the priority node even though their priority values are different.
elements.contains(new PriorityNode<>("example", 1));
elements.remove(new PriorityNode<>("example", 2));
Reference implementation
The project code includes a working DoubleMapMinPQ
. This implementation is called “double map” because it combines the runtime benefits of two maps to solve the problem efficiently. The two maps work together to help achieve sublinear (logarithmic or better) runtime for every operation.
NavigableMap<Double, Set<E>> priorityToElement
- Associates each unique priority value to all the elements with that priority value. Returning a minimum-priority element involves finding the set of minimum-priority elements and picking any element from that set.
Map<E, Double> elementToPriority
- Associates each element with its priority value in order to speed-up
contains
andchangePriority
.
The state of both maps is synchronized across all methods. Any change to one data structure also requires a change to the other data structure.
Design and implement
Design and implement 3 implementations of the MinPQ
interface. Then, use your MinPQ
implementations to complete the ReportAnalyzer
client class. Note that changePriority
is not tested: you will need to justify correctness as noted in the specific deliverables.
If you choose to collaborate on project code, all team members must work together and fully understand each implementation. Do not assign each implementation to individual team members. The implementations are described in order of increasing complexity so later implementations will require significantly more work.
Students are expected to follow Washington state law on the Student Conduct Code for the University of Washington. In this course, students must:
- Indicate on your submission any assistance received, including materials distributed in this course.
- Not receive, generate, or otherwise acquire any substantial portion or walkthrough for an assignment.
- Not aid, assist, attempt, or tolerate prohibited academic conduct in others.
In your writeup, cite any sources you used in the implementation or debugging process, including lecture materials, section materials, and collaboration with peers. If you used any kind of computer technology to help prepare your project deliverable, include the queries and/or prompts.
Submitted work that is not consistent with sources may be subject to the student conduct process.
UnsortedArrayMinPQ
Elements are added to an ArrayList
in any order. Most operations may need to scan over the entire list.
HeapMinPQ
A standard binary heap priority queue that delegates all method calls to java.util.PriorityQueue
. In other words, each MinPQ
operation is implemented by calling the underlying PriorityQueue
. This class contains only one field assigned to an instance of PriorityQueue
. Our solution only uses 1-3 additional lines of code for most methods.
Explain the part of the HeapMinPQ
class that you’re most proud of programming. Then, explain your changePriority
method with a focus on justifying how it produces the correct behavior.
OptimizedHeapMinPQ
A optimized binary heap priority queue supported by a HashMap
that associates each element with its array index to speed-up contains
and changePriority
. In other words, our heap, represented through an array, holds priority nodes organized by priority value. The HashMap
acts as an “address book” for the indices of each priority node, helping us locate nodes within the heap.
Use this MinPQ.java class as a reference.
- Identify methods in the reference class that are most similar to our interface.
- Adapt the code to implement our interface. Make sure all tests pass before optimizing the code.
- Optimize the code by adding a
HashMap
synchronized to the state of the elements in the array.
Recall from the Binary Heaps lesson that “skipping” index 0 in the array representation of a heap can help simplify expressions for finding the left child, right child, and parent nodes in a heap. You may find it helpful to skip index 0 in your implemntation by adding null
to the front of your representative ArrayList
.
Explain the part of the OptimizedHeapMinPQ
class that you’re most proud of programming. Then, explain your changePriority
method with a focus on justifying how it produces the correct behavior.
Run all the tests
for UnsortedArrayMinPQ
, HeapMinPQ
, and OptimizedHeapMinPQ
in IntelliJ and include a screenshot in your writeup showing a summary of the results. If the implementations pass all the test cases, explain an interesting bug that you addressed during your programming process. If the implementations do not pass all the test cases, explain what you think could be causing the problem.
ReportAnalyzer
In src/ReportAnalyzer.java
, complete the main
method to display the top 3 most commonly-reported Web Content Accessibility Guideline (WCAG) tags by using any MinPQ
implementation to count the unique wcagTags
. When displaying the most commonly-reported tags, use the wcagDefinitions
to convert the tag identifiers to their descriptions.
Which WCAG descriptions were the top 3 most commonly-reported for the given data/reports
?
Analyze and compare
Asymptotic analysis
Give a big-theta bound for the worst-case runtime of the removeMin
and changePriority
methods for each implementation, including DoubleMapMinPQ
, with respect to N, the size of the priority queue. Explain the worst case and the runtime of each implementation in a couple sentences while referencing the code.
For all array-backed data structures, ignore the time it would take to resize the array.
java.util.PriorityQueue
is implemented using an array-representation binary heap that
provides O(log(n)) time for the enqueuing and dequeuing methods (
offer
,poll
,remove()
andadd
); linear time for theremove(Object)
andcontains(Object)
methods; and constant time for the retrieval methods (peek
,element
, andsize
).
Java’s HashSet
and HashMap
are implemented using resizing separate-chaining hash tables where the number of buckets is always similar to the size. Assume that the hash function evenly distributes elements across the buckets in the underlying array. The Java implementations include a further optimization.
- Tree bucket optimization
- When the size of a bucket exceeds 8 elements, the separate chain is automatically converted from a linked list to a red-black tree.
Explain the impact of tree bucket optimization assuming an even distribution of elements across the underlying array. Does the tree bucket optimization help, hurt, or not affect the asymptotic analysis given our assumptions?
Random testing
Write a random test in MinPQTests
that simulates a large-scale version of the ReportAnalyzer
. Read the data/wcag.tsv
file and use randomness to sample WCAG tags until about 10000 tags have been counted by the reference and testing implementations. Then, remove all the tags from both implementations and check that the remove orders are consistent. Use the provided randomTestingInt
method and the ReportAnalyzer
that you implement earlier to aid in writing your random test with WCAG tags. Your random test will likely be simpler than the sample randomTestingInt
method.
Explain how your tests account for the possibility of ties in the remove order since multiple tags can share the same count.
After you have a functioning random test, modify it to better simulate our data/reports
sample by upweighting the occurrence of the top 3 most commonly-reported tags. The top 3 tags may be hard-coded into your test. Be sure that your approach is sufficiently general: it should be easy to change the code to upweight the top 5 or top 10 most commonly-reported tags by changing the values in a data structure without making extensive changes to the rest of the test.
Explain how you upweighted the occurrence of the top 3 most commonly-reported tags.