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Warm Up

Dynamic Programming is…

A. A programming technique used to dynamically allocate the 
machine running your logic to allow for larger scale 
processing

B. A way to make recursion faster
C. An algorithmic optimization technique that reduces 

redundant calculations by recognizing the final solution is a 
summation of smaller subproblems

D. When you store previous calculations in a memo to use in 
later recursive calls

Slido Event #8930126
https://app.sli.do/event/x9Uf
8FRMoxbJA52gEN6E1U  

https://app.sli.do/event/x9Uf8FRMoxbJA52gEN6E1U
https://app.sli.do/event/x9Uf8FRMoxbJA52gEN6E1U
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Announcements

● Practice final posted (see Ed post)
● TA lead final review this Wednesday after lecture (in lecture hall)
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The 2 Sat Solver
Reductions
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Review: Topological Sort

Perform a topological sort of the following DAG

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we add it to the ordering
If the only incoming edges are from vertices already in the ordering, then add to ordering 

A C B D E

Given: a directed graph G
Find: an ordering of the vertices so all 
edges go from left to right. 

Topological Sort

A directed graph without any cycles.

Directed Acyclic Graph (DAG)



CSE 373 23SP  6

Strongly Connected Components

Note: the direction of the edges matters!

A subgraph C such that every pair of vertices in C is connected 
via some path in both directions, and there is no other vertex 
which is connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E
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Why Find SCCs?

Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
● Have a vertex for each of the strongly connected components
● Add an edge from component 1 to component 2 if there is an edge from a vertex 

inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2
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Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the 
original graph. 
● I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get 

from 1 to 3 in H. 

D

C F

B EA K

J

1

3 4

2
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Why Must H Be a DAG?

H is always a DAG (i.e. it has no cycles). Do you see why?

If there were a cycle, I could get from component 1 to 
component 2 and back, but then they’re actually the same 
component!
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Takeaways

Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your 
graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at 
least as long.

You should think of these as “almost free” preprocessing of your graph. 
Your other graph algorithms only need to work on 

○ topologically sorted graphs 
○ strongly connected graphs 
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A Longer Example

The best way to really see why this is useful is to do a bunch of examples. 

We don’t have time. The second best way is to see one example right now...

This problem doesn’t look like it has anything to do with graphs 
● no maps
● no roads
● no social media friendships

Nonetheless, a graph representation is the best one.

I don’t expect you to remember the details of this algorithm.

I just want you to see:
● graphs can show up anywhere
● SCCs and Topological Sort are useful algorithms
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Example Problem: Final Review

We have a long list of types of problems we might want to put on the final. 
● Heap insertion problem, big-O problems, finding closed forms of recurrences, graph 

modeling…
● What if we let the students choose the topics?

To try to make you all happy, we might ask for your preferences. Each of you gives us 
two preferences of the form “I [do/don’t] want a [topic] problem on the exam” *

We’ll assume you’ll be happy if you get at least one of your two preferences.

*This is NOT how Kasey is making the final ;)

Given: A list of 2 preferences per student.
Find: A set of questions so every student gets at least one of their 
preferences (or accurately report no such question set exists).

Final Creation Problem
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Review Creation: Take 1

We have Q kinds of questions and S students.
What if we try every possible combination of questions.
How long does this take? O(2QS)
If we have a lot of questions, that’s really slow.

Instead we’re going to use a graph
What should our vertices be?
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Review Creation: Take 2
Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:

If we don’t include a big-O proof, can you still be happy?
If we do include a recurrence can you still be happy?

Yes! 
Big-O

NO 
recurrence

Yes! 
recurrence

NO 
Graph

NO 
Big-O

Yes!
Graph

NO 
Heaps

Yes! 
Heaps

Problem YES NO

Big-O   X

Recurrence    X 

Graph

Heaps

Problem YES NO

Big-O   

Recurrence   X     

Graph   X

Heaps
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Review Creation: Take 2

Hey we made a graph!

What do the edges mean? 

Each edge goes from something making someone unhappy, to the only 
thing that could make them happy.
● We need to avoid an edge that goes TRUE THING 🡪 FALSE THING

NO 
recurrence

NO 
Big-O

True
False
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We need to avoid an edge that goes TRUE THING 🡪 FALSE THING

Let’s think about a single SCC of the graph. 

Can we have a true and false statement in the same SCC?

What happens now that Yes B and NO B are in the same SCC?

NO 
C

Yes
A

NO 
BYes

B

NO 
E

Review Creation: Take 2
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Final Creation: SCCs

The vertices of a SCC must either be all true or all false.

Algorithm Step 1: Run SCC on the graph. Check that each 
question-type-pair are in different SCC.

Now what? Every SCC gets the same value. 
● Treat it as a single object! 

We want to avoid edges from true things to false things. 
● “Trues” seem more useful for us at the end. 

Is there some way to start from the end?
● YES! Topological Sort 
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NO 
C

Yes
A

NO 
DYes

B

NO 
E

Yes
C

NO
A

Yes 
DNO

B

Yes
E

NO 
F

Yes
F

Yes
H

Yes
G

NO 
H

NO 
G
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NO 
C

Yes
A

NO 
DYes

B

NO 
E

Yes
C

NO
A

Yes 
DNO

B

Yes
E

NO 
F

Yes
F

Yes
H

Yes
G

NO 
H

NO 
G
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NO 
C

Yes
A

NO 
DYes

B

NO 
E

Yes
C

NO
A

Yes 
DNO

B

Yes
E

NO 
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F
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H

Yes
G
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NO 
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2
3

4



CSE 373 23SP  21

NO 
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Yes
A

NO 
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B

NO 
E

Yes
C

NO
A
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B

Yes
E
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F

Yes
F

Yes
H
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G
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6

5
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3
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True
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Making the Final

Algorithm:
Make the requirements graph.

Find the SCCs.

If any SCC has including and not including a problem, we can’t make the final.

Run topological sort on the graph of SCC. 

Starting from the end:
● If everything in a component is unassigned, set them to true, and set their opposites to 

false.

This works!!

How fast is it? 

O(Q + S). That’s a HUGE improvement.
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Some More Context

The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and needed 
to satisfy everything in a list of requirements. 

The algorithm we just made for Final Creation works for any 2-SAT 
problem. 

Given: A set of Boolean variables, and a list of requirements, each of the 
form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the 
requirements evaluate to “true”

2-Satisfiability (“2-SAT”)
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The 2 Sat Solver
Reductions
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2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to 
explain why one doesn’t exist.

B

D
E

A

C B

D
E

A

C

2-Coloring

Given an undirected, unweighted graph G, color each vertex “red” or “blue” such 
that the endpoints of every edge are different colors (or report no such coloring 
exists).
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2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to 
explain why one doesn’t exist.

B

D
E

A

C B

D
E

A

C



CSE 373 23SP  27

What are we doing?

To wrap up the course we want to take a big step back. 

This whole quarter we’ve been taking problems and solving them 
faster. 

We want to spend the last few lectures going over more ideas on 
how to solve problems faster, and why we don’t expect to solve 
everything extremely quickly.

We’re going to
● Recall reductions 
● Classify problems into those we can solve in a reasonable amount of 

time, and those we can’t
● Explain the biggest open problem in Computer Science
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Reductions: Take 2

You already do this all the time.

In Homework 2, you reduced implementing a hashset to implementing a 
hashmap. 

Any time you use a library, you’re reducing your problem to the one the 
library solves.

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)
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Weighted Graphs: A Reduction

s

u

v
t

2
2

2

1

1

s

u

v

t

s

u

v
t 2s

u

v
t2

2

2

1

1

2

Transform Input

Unweighted Shortest Path

Transform Output
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Reductions

It might not be too surprising that we can solve one shortest 
path problem with the algorithm for another shortest path 
problem.

The real power of reductions is that you can sometimes 
reduce a problem to another one that looks very very 
different.

We’re going to reduce a graph problem to 2-SAT. 

2-Coloring

Given an undirected, unweighted graph G, color each vertex “red” or “blue” such 
that the endpoints of every edge are different colors (or report no such coloring 
exists).
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2-Coloring

Why would we want to 2-color a graph?
● We need to divide the vertices into two sets, and edges 

represent vertices that can’t be together.

You can modify BFS to come up with a 2-coloring (or 
determine none exists)
● This is a good exercise!

But coming up with a whole new idea sounds like work.

And we already came up with that cool 2-SAT algorithm. 
● Maybe we can be lazy and just use that!
● Let’s reduce 2-Coloring to 2-SAT!

Use our 2-SAT algorithm 
to solve 2-Coloring
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A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the original 
2-coloring problem.

How can I describe a two coloring of my graph? 
Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint 
and one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)
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AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D
EA

C

B

D
EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)

Transform Input

2-SAT Algorithm

Transform Output
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Questions?
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That’s all!
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Lecture 25: P vs NP CSE 373: Data Structures and 
Algorithms
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Announcements

● Final exam TA lead review after class today
● Please fill out the section final review survey to help your TAs 

play for tomorrow’s section
● P4 - please get started on Seam Carving if you haven’t already

○ TAs posted a P4 walk through to help clarify
○ Note that office hours will end on week 10
○ You cannot use late days for P4 (I already made the turn in as late as I can 

accept assignments)
● Please nominate your TAs for an award! 

○ TO NOMINATE GO TO: 
https://www.cs.washington.edu/students/ta/bandes 

Slido Event #7165864
https://app.sli.do/event/h2T
aZahvBEHWg2h79kNHxC  

https://www.cs.washington.edu/students/ta/bandes
https://app.sli.do/event/h2TaZahvBEHWg2h79kNHxC
https://app.sli.do/event/h2TaZahvBEHWg2h79kNHxC
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P vs. NP

P vs NP Explained (YouTube) 

https://www.youtube.com/watch?v=YX40hbAHx3s
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A brief history of computer science problem solving

● The field of “computer science” is the pursuit of determining 
how to use “computers” to help solve human problems

● 1843 the first “computer” is designed to solve bernouli’s 
numbers, a very difficult calculation

● 1943 the MARC II is designed to solve missile trajectory and 
other military calculations

● 1960s computers begin to become more generalized, 
researchers start looking for ways to use computers beyond 
basic math computations

● 1970s researchers are exploring what types of problems 
computers can help with, and finding themselves stuck and 
unsure if there exists a computer assisted solution or not…
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1970s computer science research

● Researchers were collecting problems to solve
○ Some problems resulted in algorithms that could “efficiently” find a 

solution
● When researchers were stuck on a problem they turned to 

“reductions” to see if they could apply a newly discovered 
algorithm to their own problem

● To help one another understand if they were working on an 
unsolved problem or not researchers started to categorize 
problems into complexity classes…
○ Enter “complexity research”
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“Efficiency”

So far you’ve only met problems that have an “efficient” solution

For our purposes “efficient” essentially means “can be executed by current day computers”

Formally we will consider any code that can run in polynomial or “P” time to be “efficient”

P complexity class

The set of all decision problems that have an algorithm that 
runs in time O(nk) for some constant k

Are these algorithms always actually efficient?

Well… no

Your n10000 algorithm or 10000n3 algorithms probably aren’t going to finish anytime 
soon, but these edge cases are rare, and polynomial time is good as a low bar
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“Efficiency” at scale

We have seen some inefficient algorithms

● Recursive backtracking (kn where k represents number of choices)
● Recursive fibonacci (2n)

But as long as n is small we can still compute them

N3 solution where n= 100 takes ~3 hrs

2n solution where n = 10 takes ~milliseconds, 

but n = 100 takes 300 quintillion years (longer than the age of the universe)
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Running Times

Table from Rosen’s Discrete Mathematics textbook
How big of a problem can we solve for an algorithm with the given running times?
“*” means more than 10100 years.
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Aside: Decision Problems

Today’s goal is to break problems into solvable/not solvable categories

For today, we’re going to talk about decision problems.
● Problems that have a “yes” or “no” answer.

Why?

Theory reasons / how we translate problems for computer understanding

But it’s not too bad
● most problems can be rephrased as very similar decision problems

E.g. instead of “find the shortest path from s to t” ask,
● Is there a path from s to t length at most k?
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NP Complexity Class

2-Coloring:
Can you color vertices of a 
graph red and blue so every 
edge has differently colored 
endpoints?

2-SAT:
Given a set of variables and a list of 
requirements:
(variable==[T/F] || variable==[T/F])
Find a setting of the variables to 
make every requirement true.

The spanning tree itself.
Verify by checking it really 
connects every vertex and its 
weight. The assignment of variables.

Verify by checking each 
requirement.

The coloring.
Verify by checking each edge.

Decision Problems such that:
● If the answer is YES, you can prove the answer is yes by 

○ A given “proof” or a “certificate” can be verified in 
polynomial time 

○ Puzzle problems where a given answer can be either 
confirmed or rejected

● What certificate would be convenient for short paths? 
○ The path itself. Easy to check the path is really in the 

graph and really short.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems such that if the 
answer is YES, there is a proof of that which can be 
verified in polynomial time

Light Spanning Tree:
IS there a spanning tree of 
graph G  of weight at most k?
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P vs. NP, the conundrum

Does being able to quickly validate a correct solution also mean you can 
quickly find a correct solution?

No one knows the answer to this question. 

In fact, it’s the biggest open problem in Computer Science.

Are P and NP the same complexity class? 
That is, can every problem that can be verified in polynomial 
time also be solved in polynomial time.

P vs. NP
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P vs NP

P problems
problems with an efficient solution NP problems

problems with an efficient solution verification

Satisfiability (SAT)

Travelling salesman (hamiltonian circuit)finding primes

Job scheduling

Database problems

multiplication

sorting

Can we PROVE that all problems with an efficiently 
verifiable solution can be solved efficiently?

sudoku

Did I make the best chess move possible?

Will all NP problems be 
discovered to also be in P?

maze solvers (dijkstra's)

MSTs

knapsack

Graph coloring

Protein folding

2SAT

Graph 2 Color

EXP problems
problems with bounded by an exponential 

computation or verification
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Searching for a solution to P v NP
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Hard Problems

Let’s say we want to prove that every problem in NP can actually be solved efficiently.

We might want to start with a really hard problem in NP.

What is the hardest problem in NP?

What does it mean to be a hard problem?

Reductions are a good definition:
● If A reduces to B then “A ≤ B” (in terms of difficulty)

○ Once you have an algorithm for B, you have one for A automatically from the 
reduction!

Does there exist an algorithm that all NP problems reduce to?
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NP-Completeness

An NP-complete problem is a “hardest” problem in NP.
If you have an algorithm to solve an NP-complete problem, you have an 
algorithm for every problem in NP. 
An NP-complete problem is a universal language for encoding “I’ll know 
it when I see it” problems.

Does one of these exist?

The problem B is NP-complete if B is in NP and 
for all problems A in NP, A reduces to B. 

NP-complete
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NP Completeness

NP problems
problems with an efficient solution verification

Travelling salesman (hamiltonian circuit)

Job scheduling

Database problems

sudoku

Did I make the best chess move possible?

P problems
problems with an efficient solution

finding primes

multiplication

sorting

maze solvers (dijkstra's)

MSTs

knapsack

Protein folding

NP complete problems
NP problems that all reduce to one another

reduction
Graph coloring

Satisfiability (SAT)
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NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete 
Cook-Levin Theorem (1971)

This sentence (and the proof of it) won Cook the Turing Award.
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2-SAT vs. 3-SAT

Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 
evaluate to “true”

2-Satisfiability (“2-SAT”)

Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False]||variable2==[True/False]||variable3==[True/False]
Find: A setting of variables to “true” and “false” so that all of the requirements 
evaluate to “true”

3-Satisfiability (“3-SAT”)
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2-SAT vs. 3-SAT

Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements 
evaluate to “true”

2-Satisfiability (“2-SAT”)

Our first try at 2-SAT (just try all variable settings) would have taken O(2Q S) time

But we came up with a really clever graph that reduced the time to O(Q + S) time
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2-SAT vs. 3-SAT

Can we do the same for 3-SAT? NO 
recurrence

NO 
Big-O

Given: A set of Boolean variables, and a list of requirements, each of the form: 
variable1==[True/False]||variable2==[True/False]||variable3==[True/False]
Find: A setting of variables to “true” and “false” so that all of the requirements 
evaluate to “true”

3-Satisfiability (“3-SAT”)

For 2-SAT we thought we had 2Q options, but we realized that we didn’t have as many 
choices as we thought - once we made a few choices, out hand was forced and we didn't 
have to check all possibilities.
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NP-Complete Problems

But Wait! There’s more!

A lot of problems are 
NP-complete

Karp’s Theorem (1972)
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NP-Complete Problems

But Wait! There’s more!

By 1979, at least 300 problems had been 
proven NP-complete.

Garey and Johnson put a list of all the 
NP-complete problems they could find in 
this textbook.

Took almost 100 pages to just list them all.

No one has made a comprehensive list since.
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NP-Complete Problems

But Wait! There’s more!

In the last month, mathematicians and computer scientists have put 
papers on the arXiv claiming to show (at least) 25 more problems are 
NP-complete.

There are literally thousands of NP-complete problems known. 

And some of them look weirdly similar to problems we’ve already 
studied.
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Examples

   
In P NP-Complete

There are literally thousands of NP-complete problems.
And some of them look weirdly similar to problems we do know 
efficient algorithms for.

Short Path

Given a directed graph, report if there is a 
path from s to t of length at most k

Long Path

Given a directed graph, report if there is a 
path from s to t of length at least k
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Examples

   

The electric company just needs a greedy algorithm to lay its wires.
Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete

Light Spanning Tree

Given a weighted graph, find a spanning 
tree (a set of edges that connect all 
vertices) of weight at most k

Traveling Salesperson

Given a weighted graph, find a tour (a walk 
that visits every vertex and returns to its 
start) of minimum weight
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Dealing with NP-Completeness

Option 1: Maybe it’s a special case we understand

Maybe you don’t need to solve the general problem, just a special case

Option 2:  Maybe it’s a special case we don’t understand (yet)

There are algorithms that are known to run quickly on “nice” instances. 
Maybe your problem has one of those.

One approach: Turn your problem into a SAT instance, find a solver and 
cross your fingers.
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Dealing with NP-Completeness

Option 3: Approximation Algorithms

You might not be able to get an exact answer, but you might be 
able to get close.

Given a weighted graph, find a tour (a walk that visits every vertex 
and returns to its start) of weight at most k.

Optimization version of Traveling Salesperson

Algorithm:
Find a minimum spanning tree.
Have the tour follow the visitation order of a DFS of the spanning tree.
Theorem: This tour is at most twice as long as the best one.
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Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

 

It’s your chance for:

● $1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining problems they 
listed)

● To get a Turing Award
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Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

 

It’s your chance for:

● $1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining problems they 
listed)

● To get a Turing Award

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

 

It’s your chance for:

● $1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining problems they 
listed)

● To get a Turing Award the Turing Award named after you
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Why Should You Care if P=NP?

Suppose P=NP. 

Specifically that we found a genuinely in-practice efficient algorithm for 
an NP-complete problem. What would you do?
● $1,000,000 from the Clay Math Institute obviously, but what’s next?
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Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an 
NP-complete problem. What would you do?
● Another $5,000,000 from the Clay Math Institute
● Put mathematicians out of work.
● Decrypt (essentially) all current internet communication. 
● No more secure online shopping or online banking or 

online messaging…or online anything.
● Cure cancer with efficient protein folding

A world where P=NP is a very very different place from the 
world we live in now.
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We already expect P ≠ NP. Why should you care when we finally 
prove it?

P ≠ NP says something fundamental about the universe.

For some questions there is not a clever way to find the right answer
● Even though you’ll know it when you see it
● Some problems require “creative leaps” to find a solution that 

cannot be programmed

There is actually a way to obscure information, so it cannot be found 
quickly no matter how clever you are.

Why Should You Care if P≠NP?
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 To prove P≠NP we need to better understand the differences between 
problems.
● Why do some problems allow easy solutions and others don’t?
● What is the structure of these problems?

 We don’t care about P vs NP just because it has a huge effect about 
what the world looks like.

 We will learn a lot about computation along the way.
 

Why Should You Care if P≠NP?

If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no 
special value in “creative leaps”, no fundamental gap between solving a problem and recognizing the solution once 
it’s found. Everyone who could appreciate a symphony would be Mozart. Everyone who could follow a step by step 
argument would be Gauss” -Scott Aaronson, MIT complexity researcher
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Questions?



CSE 373 23SP  70

That’s all!


