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Warm Up
Apply Bucket Sort and Radix Sort to the sequence 

[7625, 5002, 6746, 7403, 2266, 5532, 2010]
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Bucket
Radix

1 scatter to buckets, perform insertion on 
each bucket, gather buckets

4 phases of scatter from list to buckets based on each digit place in the entries

Slido Event #3876460
https://app.sli.do/event/q3q
keoafKp3k9JMJkKTqNm 

https://app.sli.do/event/q3qkeoafKp3k9JMJkKTqNm
https://app.sli.do/event/q3qkeoafKp3k9JMJkKTqNm
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Announcements

● EX 6 due Monday
● EX 7 releases Monday (last exercise)
● Final exam next Friday!

○ Practice final getting posted to website
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Sorting Summary
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Radix Sort

● Radix = “the base of a number system”
○ We will use “10” as we are comfortable with 10 based systems
○ Could use any value, such as 128 for ASCII strings

● Idea
○ Bucket sort on one digit at a time

■ Only works on sequences of countable data: ints, doubles, stings

○ Number of buckets = radix
○ Start with least significant digit, do one pass of bucket sort per digit

● Fun fact: invented in 1890 as part of US census

[170, 45, 75, 90, 802, 24, 2, 66]

[170, 90, 802, 2, 24, 45, 75, 66]

[802, 2, 24, 45, 66, 170, 75, 90]

[2, 24, 45, 66, 75, 90, 170, 802]

Input:

ones:

tens:

hundreds:

Example Walk Through Video 

https://www.youtube.com/watch?v=nu4gDuFabIM
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O(n)O(n)

Radix Sort

[478, 537, 9, 721, 3, 38, 143, 67]
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[3, 9, 38, 67, 143, 478, 537, 721]
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Sorting: Summary

Best-Case Worst-Case Space Stable

Selection Sort O(n2) O(n2) O(1) No

Insertion Sort O(n) O(n2) O(1) Yes

Heap Sort O(nlogn) O(nlogn) O(n) No

In-Place Heap Sort O(nlogn) O(nlogn) O(1) No

Merge Sort O(nlogn) O(nlogn) O(nlogn)
O(n)* optimized

Yes

Quick Sort O(nlogn) O(n2) O(n) No

In-place Quick Sort O(nlogn) O(n2) O(1) No

Bucket Sort O(n) O(n2) O(K+n) Yes

Radix O(n) O(n) O(n) Yes

What does Java do?
● Actually uses a combination of 3 

different sorts:
○ If objects: use Merge Sort* 

(stable!)
○ If primitives: use Dual Pivot 

Quick Sort
○ If “reasonably short” array of 

primitives: use Insertion Sort
■ Researchers say 48 elements

Key Takeaway: No single 
sorting algorithm is “the best”!
● Different sorts have different 

properties in different situations
● The “best sort” is one that is 

well-suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different
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What Else is There?

Can we do better than n log n?
● For comparison sorts, NO. A proven lower bound!

○ Intuition: n elements to sort, no faster way to find “right place” than log n
● However, niche sorts can do better in specific situations!

Many cool niche sorts beyond the scope of 373!
Counting Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/External_sorting
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Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem
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What is Dynamic Programming
An algorithmic technique of optimizing a given algorithm by:

● Identifying the final solution as a summation of solutions to smaller sub problems
○ Building off of “divide and conquer”

● Intelligently ordering our solutions to the sub-problems to build up to the final 
solution
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Dynamic Programming Techniques
1. Design “brute force” recursive solution 

2. Take a recursive algorithm and find the overlapping subproblems, then cache 
the results for future recursive calls. (Memoize)
a. Store subproblems of the main problem so we don’t have to re-compute 

them when we need them later on in solving the main problem

3. Bottom up approach

A little confusing? Don’t worry, you are not alone!
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Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem



CSE 373 23SP  13

Question 

Given a number n, print n-th Fibonacci Number. 

Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)

How can we solve this problem in the most optimized way?
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Clarify
1. Can n be a non-positive number?

a. Depends, n can be 0, but not negative. 

2. Can we use additional data structures?
a. Yes, assume we want the fastest overall runtime. 

3. What should be the result when n = 0? 
a. The result should be 0, before the first 1 in the 

sequence 1, 1, 2, …,Fib(n)
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Example

Edge Case 1: 

n = 0; Fib = None

Output = 0

Edge Case 2: 

n = 1; Fib = 1

Output = 1

Middle Case 1: 

n = 2; Fib = 1, 1

Output = 1

Middle Case 2: 

n = 9; Fib = 1, 1, 2, 3, 5, 8,

13, 21, 34

Output = 34
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Approach

Brute Force: 

1. Use a recursive function to solve

2. Starting with n and descending down, recursively return the 
addition of the last and second to last numbers of our sequence

3. End our recursion when we hit our base case n = 1

Has O(2n) runtime with O(n) space complexity…

There is a faster way using Dynamic Programming…
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Recursive Solution

public static int fib(int n) {

   if (n <= 1) {

      return n;

   }

   return fib(n-1) + fib(n-2);

}
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Memoized Dynamic Programming Solution

public int fib(int n, int[] memo) {

   if (memo[n] != null) {

      return memo[n];

   } else if (n == 0 || n == 1) {

      return 1;

   } else {

      int result = fib(n-1) + fib(n-2);

      memo[n] = result;

      return result;

   }

}

Detailed walkthrough of this solution 

2n+1 recursive calls gives us O(n) instead of O(2n)

0 1 2 3 4 5

0 1 1 2 3 5

memo[] = 

* because of pass by reference for Arrays there is only ever one array and we are 
simply returning the reference to the updated Array, not remaking it with each 
recursive call

https://www.youtube.com/watch?v=vYquumk4nWw
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Bottom Up Dynamic Programming Solution

public int fib(int n) {

   int f[] = new int[n+1];

   f[1] = 1;

   f[2] = 1;

   for (int i = 3; i <= n; i++) {

      f[i] = f[i-1] + f[i-2];

   }

   return f[n];

}

Detailed walkthrough of this solution 

https://www.youtube.com/watch?v=vYquumk4nWw
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Optimize

 Optimized: Use Dynamic Programming to pre-compute Fib sequence up 
until n and return. Runs in O(N) runtime. 

 Optimized no additional data structure: We compute the value of our 
current term with a fixed number of elements. O(1)

 Note: When you are computing a value in a sequence in an interview, 
think about using DP if applicable. 
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Implement

 Create 3 variables to hold our second last value, our last value, and 
our current value with respect to our current term in the sequence 
when iterating.

 Iterate in a for-loop until we hit term n and add our last and 
second last values and set them equal to our current value. 

 When we exit the for-loop, we will have computed the Fibonacci 
value at n. 
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Implement - Java Code

    static int fib(int n) {
        int a = 0, b = 1, c;
        if (n == 0)
            return a;
        for (int i = 2; i <= n; i++) {
            c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
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Test
Test with Middle Case 2:

n = 9

Fib = 1, 1, 2, 3, 5, 8, 13, 21, 34

Resulting variable values after for loop ends:

a = 21, b = 34, c = 34

Return b = 34
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Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem
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Question 
You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you 
climb to the top?

How can we solve this problem in the most optimized way?
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Clarify

1. Can n be a non-positive number?
a. No, n must be equal to or greater than 1. 

2. Can we use additional data structures?
a. Yes, assume we want the fastest overall runtime. 

3. Can we climb the same number of steps in a row? 
a. Yes, you can climb in any combination of 1 or 2 

steps. 
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Example
Edge Case 1: 

n = 1; 

1) Take one step forward. 

Output = 1

Edge Case 2: 

n = 2; 

1) 1 + 1 step 

2) 2 steps

Output = 2

Middle Case:  

n = 3; 

1) 1 + 1 + 1 steps

2) 1 + 2 steps

3) 2 + 1 steps

Output = 3
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Approach

Brute Force: 

1. Use a recursive function to solve

2. Starting with n and descending down, recursively return the sum 
of the combinations it took to get to the last and second last 
steps from our current step

3. End our recursion when we hit our base cases n = 1, n = 0

Has O(2n) runtime with O(n) space complexity…unless…dynamic 
programming…
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Optimize

 Optimized: Use Dynamic Programming to pre-compute the 
combinations of steps it takes to get to n and return. Runs in 
O(N) runtime. 

 Optimized no additional data structure: We compute the value 
of our current step with a fixed number of elements (our last 
and second last step it took to get to our current step). O(1)

 Note: We are computing a value in a sequence, just like the Fibonacci 
problem…
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Implement
 Create 3 variables to hold the number of combinations it took to get to 

our second last step, our last step, and our current step with respect to 
our current step in the sequence when iterating.

 Iterate in a for-loop until we hit term n and add our last and second last 
steps’ combinations and set them equal to the number of combinations 
to get to our current step. 

 When we exit the for-loop, we will have the number of combinations to 
get to step n. 
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Implement - Java Code
    public int climbStairs(int n) {
        int secondLast = 1, last = 1, current = 1;
        if (n == 1)
            return last;
        for (int i = 2; i <= n; i++) {
            current = secondLast + last;
            secondLast = last;
            last = current;
        }
        return last;
    }
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Fun Fact

The previous solution runs faster than 100% of leetcode 
solutions for the problem…which is the first time I have 
ever gotten a 100%...if you haven’t been convinced of 
the power of DP yet…you should be now…
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Test
Test with Middle Case:

n = 3

3 different ways to get to step 3

Resulting variable values after for loop ends:

secondLast = 2, last = 3, current = 3

Return last = 3
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Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem
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1. Use a DAG to visualize which box can stack on top of which
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2. Identify sub problems: Paths in the DAG represent valid stacks
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3. Find how subproblems build to larger solution
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4. Generalize relationship between subproblems and final solution
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5. Implement solving subproblems in correct order
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Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
0/1 Knapsack Problem
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0/1 Knapsack Problem

Given a set of objects which have 
both a value and a weight (v

i
, w

i
) 

what is the maximum value we 
can obtain by selecting a subset 
of these objects such that the 
sum of the weights does not 
exceed the knapsacks given 
capacity?

Problem Walk Through Video 

https://www.youtube.com/watch?v=xOlhR_2QCXY
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Brute Force Recursive Solution

public int knapsack(int n, int cap, int[] w, int[] v) {

   if (n == 0 || cap == 0) {

      result = 0;

   } else if (w[n] > cap) {

      result = knapsack(n-1, cap, w, v);

   } else {

      int temp1 = knapsack(n-1, cap, w, v);

      int temp2 = v[n] + knapsack(n-1, cap - w[n-1], w, v);

      result = Math.max(temp1, temp2);

      return result;

   }

}
O(2n)



CSE 373 23SP  45

Recursive Solution is Exponential

45
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Memoized DP Solution
public int knapsack(int n, int cap, int[] w, int[] v, int[][] memo) {

   int result = memo[n][cap];

   if (memo[n][cap] == NULL) {

      if (n == 0 || cap == 0) {

         result = 0;

      } else if (w[n] > c) {

         result = knapsack(n-1, cap);

      } else {

         int temp1 = knapsack(n-1, cap);

         int temp2 = v[n] + knapsack(n-1, cap - w[n-1]);

         result = Math.max(temp1, temp2);

         memo[n][cap] = result;

      }

   }

   return result;

}

O(n)
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More Examples of Dynamic Programming Problems

● Count the different ways to move through a 6x9 grid
● Given a set of coins, how can we make 27 cents using the smallest number of 

coins?
● Given a set of strings, what are the possible ways to construct the string 

“potentpot”
● Knapsack problem

Helpful walk through videos:

5 Simple Steps for Solving Dynamic Programming Problems 

https://www.youtube.com/watch?v=nLmhmB6NzcM
https://www.youtube.com/watch?v=aPQY__2H3tE
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Questions?
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That’s all!


