
 1CSE 373 23SP

Lecture 21: Introduction to
Sorting

CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

If I handed you a stack of papers and asked you to sort
them by author name alphabetically, how would you do it?

Selection Sort - I would flip through the stack from front to back looking for the first name, then pull it to the front. Then I
would flip through again looking for the second name and put it behind the first and so on until all were sorted

Insertion Sort - I look at the first two papers and put them in sorted order, then look at the third and put it in sorted order
with the previous two and continue until the whole stack is in sorted order

Merge Sort - I would spread the papers out on the ground and break them into subsections, sort the subsections section
by section then put them all back together

Bucket Sort - I would start by putting the papers into groups based on the first letter of the author’s name until I had 26
piles, then I would sort within those piles and put them all back together

Slido Event #2559450
https://app.sli.do/event/sze
VCNPUW5uXG81RSji8Lk

https://app.sli.do/event/szeVCNPUW5uXG81RSji8Lk
https://app.sli.do/event/szeVCNPUW5uXG81RSji8Lk

CSE 373 23SP 3

Announcements

● EX5 due today
● EX6 releases today
● Final exam on Friday May 26th

CSE 373 23SP 4

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

CSE 373 23SP 5

Where are we?

This course is “data structures and algorithms”

Data structures
● Organize our data so we can process it effectively

Algorithms
● Actually process our data!

We’re going to start focusing on algorithms

We’ll start with sorting
● A very common, generally-useful preprocessing step
● And a convenient way to discuss a few different ideas for designing algorithms.

CSE 373 23SP 6

Types of Sorts

 Niche Sorts aka “linear sorts”

 Leverages specific properties about the
items in the list to achieve faster
runtimes

 niche sorts typically run O(n) time

 For example, we’re sorting small
integers, or short strings

 In this class we’ll focus on comparison
sorts

Comparison Sorts

Compare two elements at a time

General sort, works for most types of
elements

What does this mean?
compareTo() works for your elements
● And for our running times to be correct,

compareTo() must run in O(1) time

CSE 373 23SP 7

Sorting Goals

 Stable sort

 A sorting algorithm is stable if any equal items remain in the same relative
order before and after the sort

 Why do we care?
-“data exploration” Client code will want to sort by multiple features and

“break ties” with secondary features

[(8, “fox”), (9, “dog”), (4, “wolf”), (8, “cow”)]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)]

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]

Stable

Unstable

 Speed

 Of course, we want our algorithms to
be fast.

 Sorting is so common, that we often
start caring about constant factors.

In-place sort

A sorting algorithm is in-place if it allocates O(1) extra memory

Modifies input array (can’t copy data into new array)

Useful to minimize memory usage

CSE 373 23SP 8

SO MANY SORTS!

Quicksort, Merge sort, in-place merge sort, heap sort,
insertion sort, intro sort, selection sort, timsort, cubesort,
shell sort, bubble sort, binary tree sort, cycle sort, library
sort, patience sorting, smoothsort, strand sort, tournament
sort, cocktail sort, comb sort, gnome sort, block sort,
stackoverflow sort, odd-even sort, pigeonhole sort, bucket
sort, counting sort, radix sort, spreadsort, burstsort,
flashsort, postman sort, bead sort, simple pancake sort,
spaghetti sort, sorting network, bitonic sort, bogosort,
stooge sort, insertion sort, slow sort, rainbow sort…

CSE 373 23SP 9

Goals

Algorithm Design (like writing invariants) is more art than science.

We’ll do a little bit of designing our own algorithms
● Take CSE 417 (usually runs in Winter) for more

Mostly we’ll understand how existing algorithms work

Understand their pros and cons
● Design decisions!

Practice how to apply those algorithms to solve problems

CSE 373 23SP 10

Algorithm Design Patterns

Algorithms don’t just come out of thin air.

There are common patterns we use to design new algorithms.

Many of them are applicable to sorting (we’ll see more patterns later in
the quarter)

Invariants/Iterative improvement
● Step-by-step make one more part of the input your desired output.

Divide and conquer
● Split your input
● Solve each part (recursively)
● Combine solved parts into a single

Using data structures
● Speed up our existing ideas

CSE 373 23SP 11

Principle 1
Invariants/Iterative improvement
● Step-by-step, make one more part of the input your desired output

We’ll write iterative algorithms to satisfy the following invariant:

After k iterations of the loop, the first k elements of the array will be
sorted.

CSE 373 23SP 12

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

CSE 373 23SP 13

Selection Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

https://www.youtube.com/watch?v=Ns4TPTC8whw

CSE 373 23SP 14

Selection Sort

public void selectionSort(collection) {
 for (entire list)
 int newIndex = findNextMin(currentItem);
 swap(newIndex, currentItem);
}
public int findNextMin(currentItem) {
 min = currentItem
 for (unsorted list)
 if (item < min)
 min = currentItem
 return min
}
public int swap(newIndex, currentItem) {
 temp = currentItem
 currentItem = newIndex
 newIndex = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

No

Yes

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

Top K sort without needing
extra space

CSE 373 23SP 15

Selection Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

✓

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

*Swapping non-adjacent items can result in instability of sorting algorithms

CSE 373 23SP 16

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

CSE 373 23SP 17

Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

CSE 373 23SP 18

Insertion Sort
0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

public void insertionSort(collection) {
 for (entire list)
 if(currentItem is smaller than largestSorted)
 int newIndex = findSpot(currentItem);
 shift(newIndex, currentItem);
}
public int findSpot(currentItem) {
 for (sorted list going backwards)
 if (spot found) return
}
public void shift(newIndex, currentItem) {
 for (i = currentItem > newIndex)
 item[i+1] = item[i]
 item[newIndex] = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

Yes

Yes

Mostly sorted collections of
primitives

CSE 373 23SP 19

Insertion Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

✓

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

✓

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable
● All swaps happen between

adjacent items to get current item
into correct relative position
within sorted portion of array

● Duplicates will always be
compared against one another in
their original orientation, thus it
can be maintained with proper if
logic

CSE 373 23SP 20

Principle 2: Divide and Conquer

General recipe:

1. Divide your work into smaller pieces recursively

2. Conquer the recursive subproblems
○ In many algorithms, conquering a subproblem requires no extra

work beyond recursively dividing and combining it!

3. Combine the results of your recursive calls

divideAndConquer(input) {
 if (small enough to solve):
 conquer, solve, return results
 else:
 divide input into a smaller pieces
 recurse on smaller pieces
 combine results and return
}

CSE 373 23SP 21

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

CSE 373 23SP 22

Merge Sort
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22

0 1 2 3

55 1 7 6

0 1 2 3

2 8 22 91

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

8

0

2

0

91

0

22

0

55

0

1

0 1 2 3

1 6 7 55

0

7

0

6

…

…

Conquer

Simply divide in
half each time

No extra
conquer work
needed!

The actual
sorting happens
here!

https://www.youtube.com/watch?v=XaqR3G_NVoo

https://www.youtube.com/watch?v=XaqR3G_NVoo

CSE 373 23SP 23

Merge Sort: Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22

0 1 2 3

55 1 7 6

0 1

8 2

0 1

91 22

0 1

55 1

0 1

7 6

0

8

0

2

0

91

0

22

0

55

0

1

0

7

0

6

Recursive Case:
split the array in
half and recurse on
both halves

Base Case: when
array hits size 1,
stop dividing. In
Merge Sort, no
additional work to
conquer:
everything gets
sorted in combine
step!

Sort the pieces through the magic of recursion

CSE 373 23SP 24

Merge Sort: Combine Step

0 1 2 3

2 8 22 91

0 1 2 3

1 6 7 55

Combine

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combining two sorted arrays:
1. Initialize pointers to start of both arrays
2. Repeat until all elements are added:

1. Add whichever is smaller to the result array
2. Move that pointer forward one spot

Works because we only move the smaller pointer – then ”reconsider” the larger against a new value, and
because the arrays are sorted we never have to backtrack!

CSE 373 23SP 25

Merge Sort
mergeSort(list) {
 if (list.length == 1):
 return list
 else:
 smallerHalf = mergeSort(new [0, ..., mid])
 largerHalf = mergeSort(new [mid + 1, ...])
 return merge(smallerHalf, largerHalf)
}

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

Useful for:

Yes

No

Same

Same

0 1 2 3

55 1 7 6

0 1

55 1

0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55

0 1

6 7

n

2 log n

2 Constant size Input
Don’t forget your old friends, the
3 recursive patterns!

Predictable sort times regardless of sorted nature
(This is what Java uses for Objects, kinda)

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(java.lang.Object[])

CSE 373 23SP 26

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

CSE 373 23SP 27

Divide and Conquer

There’s more than one way to divide!

Mergesort:
● Split into two arrays.
● Elements that just happened to be on the left and that happened to be on

the right.

Quicksort:
● Split into two arrays.
● Roughly, elements that are “small” and elements that are “large”
● How to define “small” and “large”? Choose a “pivot” value in the array

that will partition the two arrays!

CSE 373 23SP 28

0

8

Quick Sort (v1)
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

0 1 2 3

1 2 6 7

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

1

0

2

0

6

0

7

0

8

0

22

0 1 2 3

1 6 7 55

0

55

0

91

…

…

Conquer

Choose a “pivot”
element, partition
array relative to it!

Again, no extra
conquer step
needed!

Simply
concatenate the
now-sorted arrays!

PIVOT

0

8

https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ywWBy6J5gz8

CSE 373 23SP 29

0

8

Quick Sort (v1): Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

Recursive Case:
● Choose a “pivot”

element
● Partition: linear scan

through array, add
smaller elements to
one array and larger
elements to another

● Recursively partition

PIVOT

Base Case:
● When array hits size

1, stop dividing

0 1

7 6

0

1

0

2

PIVOT PIVOT

0 1

22 55

0

91

PIVOT PIVOT

0

6

0

7

0

22

0

55

CSE 373 23SP 30

Quick Sort (v1): Combine Step
Combine

Simply concatenate
the arrays that were
created earlier!
Partition step already
left them in order ☺

0

8

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91

CSE 373 23SP 31

Quick Sort (v1)
quickSort(list) {
 if (list.length == 1):
 return list
 else:
 pivot = choosePivot(list)
 smallerHalf = quickSort(getSmaller(pivot, list))
 largerHalf = quickSort(getBigger(pivot, list))
 return smallerHalf + pivot + largerHalf
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

No

Can be done!

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

PIVOT

PIVOT

0

6

0

7

0 1 2 3

1 2 6 7

0 1

6 7

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

Fast sorting of primitives!
(This is what Java uses for Primitives)

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(byte[])

CSE 373 23SP 32

Can we do better?

How to avoid hitting the worst case?
● It all comes down to the pivot. If the pivot divides each array in half, we

get better behavior

Here are four options for finding a pivot. What are the tradeoffs?
● Just take the first element
● Take the median of the full array
● Take the median of the first, last, and middle element
● Pick a random element

CSE 373 23SP 33

Strategies for Choosing a Pivot

Most commonly used

Just take the first element
● Very fast!
● But has worst case: for example, sorted lists have Ω(n²) behavior

Take the median of the full array
● Can actually find the median in O(n) time (google QuickSelect). It’s complicated
● O(n log n) even in the worst case… but the constant factors are awful. No one does

quicksort this way.

Take the median of the first, last, and middle element
● Makes pivot slightly more content-aware, at least won’t select very smallest/largest
● Worst case is still Ω(n²) , but on real-world data tends to perform well!

Pick a random element
● Get O(n log n) runtime with probability at least 1-1/n²
● No simple worst-case input (e.g. sorted, reverse sorted)

CSE 373 23SP 34

Quick Sort (v2: In-Place)
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

PIVOT? PIVOT? PIVOT?

Select a pivot

Move pivot out
of the way

Bring low and high
pointers together,
swapping elements
if needed

Meeting point is
where pivot
belongs; swap in.
Now recurse on
smaller portions
of same array!

Divide PIVOT!

CSE 373 23SP 35

Quick Sort (v2: In-Place)
quickSort(list) {
 if (list.length == 1):
 return list
 else:
 pivot = choosePivot(list)
 smallerPart, largerPart = partition(pivot, list)
 smallerPart = quickSort(smallerPart)
 largerPart = quickSort(largerPart)
 return smallerPart + pivot + largerPart
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

0 1 2 3 4 5

0 3 6 9 7 8

choosePivot:
- Use one of the pivot

selection strategies

partition:
- For in-place Quick Sort, series of swaps

to build both partitions at once
- Tricky part: moving pivot out of the way

and moving it back!
- Similar to Merge Sort divide step: two

pointers, only move smaller one

CSE 373 23SP 36

Questions?

CSE 373 23SP 37

That’s all!

