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Warm Up

If I handed you a stack of papers and asked you to sort 
them by author name alphabetically, how would you do it?

Selection Sort - I would flip through the stack from front to back looking for the first name, then pull it to the front. Then I 
would flip through again looking for the second name and put it behind the first and so on until all were sorted

Insertion Sort - I look at the first two papers and put them in sorted order, then look at the third and put it in sorted order 
with the previous two and continue until the whole stack is in sorted order

Merge Sort - I would spread the papers out on the ground and break them into subsections, sort the subsections section 
by section then put them all back together

Bucket Sort - I would start by putting the papers into groups based on the first letter of the author’s name until I had 26 
piles, then I would sort within those piles and put them all back together

Slido Event #2559450
https://app.sli.do/event/sze
VCNPUW5uXG81RSji8Lk  

https://app.sli.do/event/szeVCNPUW5uXG81RSji8Lk
https://app.sli.do/event/szeVCNPUW5uXG81RSji8Lk
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Announcements

● EX5 due today
● EX6 releases today
● Final exam on Friday May 26th
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Intro to Sorting
Selection Sort 
Insertion Sort
Merge Sort 
Quick Sort
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Where are we?

This course is “data structures and algorithms”

Data structures
● Organize our data so we can process it effectively

Algorithms
● Actually process our data!

We’re going to start focusing on algorithms

We’ll start with sorting
● A very common, generally-useful preprocessing step
● And a convenient way to discuss a few different ideas for designing algorithms.
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Types of Sorts

 Niche Sorts aka “linear sorts”
 
 Leverages specific properties about the 
items in the list to achieve faster 
runtimes
 
 niche sorts typically run O(n) time

 For example, we’re sorting small 
integers, or short strings

 In this class we’ll focus on comparison 
sorts

Comparison Sorts

Compare two elements at a time

General sort, works for most types of 
elements

What does this mean? 
compareTo() works for your elements
● And for our running times to be correct, 

compareTo() must run in O(1) time



CSE 373 23SP  7

Sorting Goals

 Stable sort

 A sorting algorithm is stable if any equal items remain in the same relative 
order before and after the sort

 Why do we care?
-“data exploration” Client code will want to sort by multiple features and 

“break ties” with secondary features

[(8, “fox”), (9, “dog”), (4, “wolf”), (8, “cow”)]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)]

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]

Stable

Unstable

 Speed

 Of course, we want our algorithms to 
be fast.

 Sorting is so common, that we often 
start caring about constant factors.

In-place sort

A sorting algorithm is in-place if it allocates O(1) extra memory

Modifies input array (can’t copy data into new array)

Useful to minimize memory usage



CSE 373 23SP  8

SO MANY SORTS!

Quicksort, Merge sort, in-place merge sort, heap sort, 
insertion sort, intro sort, selection sort, timsort, cubesort, 
shell sort, bubble sort, binary tree sort, cycle sort, library 
sort, patience sorting, smoothsort, strand sort, tournament 
sort, cocktail sort, comb sort, gnome sort, block sort, 
stackoverflow sort, odd-even sort, pigeonhole sort, bucket 
sort, counting sort, radix sort, spreadsort, burstsort, 
flashsort, postman sort, bead sort, simple pancake sort, 
spaghetti sort, sorting network, bitonic sort, bogosort, 
stooge sort, insertion sort, slow sort, rainbow sort…
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Goals

Algorithm Design (like writing invariants) is more art than science.

We’ll do a little bit of designing our own algorithms
● Take CSE 417 (usually runs in Winter) for more

Mostly we’ll understand how existing algorithms work

Understand their pros and cons
● Design decisions!

Practice how to apply those algorithms to solve problems
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Algorithm Design Patterns

Algorithms don’t just come out of thin air. 

There are common patterns we use to design new algorithms. 

Many of them are applicable to sorting (we’ll see more patterns later in 
the quarter)

Invariants/Iterative improvement
● Step-by-step make one more part of the input your desired output.

Divide and conquer
● Split your input
● Solve each part (recursively)
● Combine solved parts into a single

Using data structures
● Speed up our existing ideas
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Principle 1
Invariants/Iterative improvement
● Step-by-step, make one more part of the input your desired output

We’ll write iterative algorithms to satisfy the following invariant:

After k iterations of the loop, the first k elements of the array will be 
sorted.
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Intro to Sorting
Selection Sort 
Insertion Sort
Merge Sort 
Quick Sort
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Selection Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

https://www.youtube.com/watch?v=Ns4TPTC8whw
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Selection Sort 

public void selectionSort(collection) {
   for (entire list) 
      int newIndex = findNextMin(currentItem);
      swap(newIndex, currentItem);
}
public int findNextMin(currentItem) {
   min = currentItem
   for (unsorted list)
      if (item < min) 
         min = currentItem
   return min
}
public int swap(newIndex, currentItem) {
   temp = currentItem
   currentItem = newIndex
   newIndex = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

 

 

No

Yes

 

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

Top K sort without needing 
extra space
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Selection Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

✓

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

*Swapping non-adjacent items can result in instability of sorting algorithms
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Intro to Sorting
Selection Sort 
Insertion Sort
Merge Sort 
Quick Sort
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Insertion Sort

0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U
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Insertion Sort 
0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

public void insertionSort(collection) {
   for (entire list) 
      if(currentItem is smaller than largestSorted)  
         int newIndex = findSpot(currentItem);
         shift(newIndex, currentItem);
}
public int findSpot(currentItem) {
   for (sorted list going backwards)
      if (spot found) return
}
public void shift(newIndex, currentItem) {
   for (i = currentItem > newIndex)
      item[i+1] = item[i]
   item[newIndex] = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

 

 

Yes

Yes

 

Mostly sorted collections of 
primitives 
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Insertion Sort Stability

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

✓

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

✓

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable
● All swaps happen between 

adjacent items to get current item 
into correct relative position 
within sorted portion of array

● Duplicates will always be 
compared against one another in 
their original orientation, thus it 
can be maintained with proper if 
logic
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Principle 2: Divide and Conquer

General recipe:

1. Divide your work into smaller pieces recursively

2. Conquer the recursive subproblems
○ In many algorithms, conquering a subproblem requires no extra 

work beyond recursively dividing and combining it!

3. Combine the results of your recursive calls

divideAndConquer(input) {
  if (small enough to solve):
    conquer, solve, return results
  else:
    divide input into a smaller pieces
    recurse on smaller pieces
    combine results and return
}
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Intro to Sorting
Selection Sort 
Insertion Sort
Merge Sort 
Quick Sort
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Merge Sort
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22

0 1 2 3

55 1 7 6

0 1 2 3

2 8 22 91

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

8

0

2

0

91

0

22

0

55

0

1

0 1 2 3

1 6 7 55

0

7

0

6

…

…

Conquer

Simply divide in 
half each time

No extra 
conquer work 
needed!

The actual 
sorting happens 
here!

https://www.youtube.com/watch?v=XaqR3G_NVoo

https://www.youtube.com/watch?v=XaqR3G_NVoo
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Merge Sort: Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22

0 1 2 3

55 1 7 6

0 1

8 2

0 1

91 22

0 1

55 1

0 1

7 6

0

8

0

2

0

91

0

22

0

55

0

1

0

7

0

6

Recursive Case: 
split the array in 
half and recurse on 
both halves

Base Case: when 
array hits size 1, 
stop dividing. In 
Merge Sort, no 
additional work to 
conquer: 
everything gets 
sorted in combine 
step!

Sort the pieces through the magic of recursion
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Merge Sort: Combine Step

0 1 2 3

2 8 22 91

0 1 2 3

1 6 7 55

Combine

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combining two sorted arrays:
1. Initialize pointers to start of both arrays
2. Repeat until all elements are added:

1. Add whichever is smaller to the result array
2. Move that pointer forward one spot

Works because we only move the smaller pointer – then ”reconsider” the larger against a new value, and 
because the arrays are sorted we never have to backtrack!
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Merge Sort
mergeSort(list) {
   if (list.length == 1):
      return list
   else:
      smallerHalf = mergeSort(new [0, ..., mid])
      largerHalf = mergeSort(new [mid + 1, ...])
      return merge(smallerHalf, largerHalf)
}

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

Useful for:

Yes

No

 

Same

Same

0 1 2 3

55 1 7 6

0 1

55 1

0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55

0 1

6 7

n

2 log n

 

2 Constant size Input
Don’t forget your old friends, the 
3 recursive patterns!

Predictable sort times regardless of sorted nature 
(This is what Java uses for Objects, kinda)

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(java.lang.Object[])
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Intro to Sorting
Selection Sort 
Insertion Sort
Merge Sort 
Quick Sort
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Divide and Conquer

There’s more than one way to divide!

Mergesort:
● Split into two arrays. 
● Elements that just happened to be on the left and that happened to be on 

the right.

Quicksort:
● Split into two arrays.
● Roughly, elements that are “small” and elements that are “large”
● How to define “small” and “large”? Choose a “pivot” value in the array 

that will partition the two arrays!
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0

8

Quick Sort (v1)
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

0 1 2 3

1 2 6 7

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

1

0

2

0

6

0

7

0

8

0

22

0 1 2 3

1 6 7 55

0

55

0

91

…

…

Conquer

Choose a “pivot” 
element, partition 
array relative to it!

Again, no extra 
conquer step 
needed!

Simply 
concatenate the 
now-sorted arrays! 

PIVOT

0

8

https://www.youtube.com/watch?v=ywWBy6J5gz8 

https://www.youtube.com/watch?v=ywWBy6J5gz8


CSE 373 23SP  29

0

8

Quick Sort (v1): Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

Recursive Case:
● Choose a “pivot” 

element
● Partition: linear scan 

through array, add 
smaller elements to 
one array and larger 
elements to another

● Recursively partition

PIVOT

Base Case:
● When array hits size 

1, stop dividing

0 1

7 6

0

1

0

2

PIVOT PIVOT

0 1

22 55

0

91

PIVOT PIVOT

0

6

0

7

0

22

0

55



CSE 373 23SP  30

Quick Sort (v1): Combine Step
Combine

Simply concatenate 
the arrays that were 
created earlier! 
Partition step already 
left them in order ☺

0

8

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91
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Quick Sort (v1)
quickSort(list) {
   if (list.length == 1):
      return list
   else:
      pivot = choosePivot(list)
      smallerHalf = quickSort(getSmaller(pivot, list))
      largerHalf = quickSort(getBigger(pivot, list))
      return smallerHalf + pivot + largerHalf
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

No

Can be done!

 

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

PIVOT

PIVOT

0

6

0

7

 

 

0 1 2 3

1 2 6 7

0 1

6 7

 

 

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

Fast sorting of primitives! 
(This is what Java uses for Primitives)

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(byte[])
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Can we do better?

How to avoid hitting the worst case?
● It all comes down to the pivot. If the pivot divides each array in half, we 

get better behavior

Here are four options for finding a pivot. What are the tradeoffs?
● Just take the first element
● Take the median of the full array
● Take the median of the first, last, and middle element
● Pick a random element
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Strategies for Choosing a Pivot

Most commonly used

Just take the first element
● Very fast!
● But has worst case: for example, sorted lists have Ω(n²) behavior

Take the median of the full array
● Can actually find the median in O(n) time (google QuickSelect). It’s complicated
● O(n log n) even in the worst case… but the constant factors are awful. No one does 

quicksort this way.

Take the median of the first, last, and middle element
● Makes pivot slightly more content-aware, at least won’t select very smallest/largest
● Worst case is still Ω(n²) , but on real-world data tends to perform well!

Pick a random element
● Get O(n log n) runtime with probability at least 1-1/n²
● No simple worst-case input (e.g. sorted, reverse sorted)
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Quick Sort (v2: In-Place) 
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

PIVOT? PIVOT? PIVOT?

Select a pivot

Move pivot out 
of the way

Bring low and high 
pointers together, 
swapping elements 
if needed

Meeting point is 
where pivot 
belongs; swap in. 
Now recurse on 
smaller portions 
of same array!

Divide PIVOT!
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Quick Sort (v2: In-Place)
quickSort(list) {
   if (list.length == 1):
      return list
   else:
      pivot = choosePivot(list)
      smallerPart, largerPart = partition(pivot, list)
      smallerPart = quickSort(smallerPart)
      largerPart = quickSort(largerPart)
      return smallerPart + pivot + largerPart
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

 

 

 

 

 

0 1 2 3 4 5

0 3 6 9 7 8

choosePivot:
- Use one of the pivot 

selection strategies

partition:
- For in-place Quick Sort, series of swaps 

to build both partitions at once
- Tricky part: moving pivot out of the way 

and moving it back!
- Similar to Merge Sort divide step: two 

pointers, only move smaller one
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Questions?
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That’s all!


