
 1CSE 373 23SP

Lecture 15: Intro to Graphs CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Announcements

● EX 2 regrade requests due 5/7
○ Note these are regrades not resubmissions

● EX 4 due today
● EX 5 out later today
● P3 due next Wednesday 5/10
● Midterm grades will be out by Wed 5/3

○ Resubmission will open on Wednesday
○ You will receive numerical scores per question
○ Resubmit only the questions you want to re-do

■ those you skip we will just carry your initial score over

○ final midterm score will be the average of your two submissions

Slido Event #2085756
https://app.sli.do/event/3Yy
oRiYobDRxkEvADqWofr

https://app.sli.do/event/3YyoRiYobDRxkEvADqWofr
https://app.sli.do/event/3YyoRiYobDRxkEvADqWofr

CSE 373 23SP 3

Introduction to Graphs
Graph Modelling

CSE 373 23SP 4

Inter-data Relationships

● Elements only store
pure data, no
connection info

● Only relationship
between data is order

0 1 2

A B C

Arrays

● Elements store data
and connection info

● Directional
relationships between
nodes; limited
connections

Trees

● Elements AND
connections can store
data

● Relationships dictate
structure; huge
freedom with
connections

B

A C

B

A

C

Graphs

CSE 373 23SP 5

Graphs

● Everything is graphs.
● Most things we’ve studied this quarter can be represented

by graphs.
○ BSTs are graphs
○ Linked lists? Graphs.
○ Heaps? Also can be represented as graphs.
○ Those trees we drew in the tree method? Graphs.

● But it’s not just data structures that we’ve discussed…
○ Google Maps database? Graph.
○ Facebook? They have a “graph search” team. Because it’s a graph
○ Gitlab’s history of a repository? Graph.
○ Those pictures of prerequisites in your program? Graphs.
○ Family tree? That’s a graph

CSE 373 23SP 6

Applications
Physical Maps
● Airline maps

○ Vertices are airports, edges are flight paths

● Traffic
○ Vertices are addresses, edges are streets

Relationships
● Social media graphs

○ Vertices are accounts, edges are follower
relationships

● Traffic
○ Vertices are classes, edges are usage

Influence
● Biology

○ Vertices are cancer cell desinations, edges are
migration paths

Related topics
● Web Page Ranking

○ Vertices are web pages, edges are
hyperlinks

● Wikipedia
○ Vertices are articles, edges are links

And so many more!!

www.allthingsgraphed.com

http://www.allthingsgraphed.com/

CSE 373 23SP 7

Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where…

● V is a set of vertices
○ A vertex or “node” is a data entity
○ V = { A, B, C, D, E, F, G, H }

● E is a set of edges
○ An edge is a connection between two vertices

○ E = { (A, B), (A, C), (A, D), (A, H),
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}

A

B

CD

E

F

G

H

CSE 373 23SP 8

Graph Vocabulary

Graph Direction
● Undirected graph – edges have no direction and are two-way

○ V = { Karen, Jim, Pam }
○ E = { (Jim, Pam), (Jim, Karen) } inferred (Karen, Jim) and (Pam, Jim)

● Directed graphs – edges have direction and are thus one-way
○ V = { Gunther, Rachel, Ross }
○ E = { (Gunther, Rachel), (Rachel, Ross), (Ross, Rachel) }

Degree of a Vertex
● Degree – the number of edges connected to that vertex

○ Karen : 1, Jim : 1, Pam : 1
● In-degree – the number of directed edges that point to a vertex

○ Gunther : 0, Rachel : 2, Ross : 1
● Out-degree – the number of directed edges that start at a vertex

○ Gunther : 1, Rachel : 1, Ross : 1

Karen Jim

Pam

Gunther

Rachel

Ross

Undirected Graph:

Directed Graph:

CSE 373 23SP 9

More More Graph Terminology
Two vertices are connected if there is a path between
them
● If all the vertices are connected, we say the graph is

connected
○ A directed graph is weakly connected if replacing

every directed edge with an undirected edge
results in a connected graph

○ A directed graph is strongly connected if a directed
path exists between every pair of vertices

● The number of edges leaving a vertex is its degree

A path is a sequence of vertices connected by edges
● A simple path is a path without repeated vertices
● A cycle is a path whose first and last vertices are the same

○ A graph with a cycle is cyclic

a

b

c

f

e

g

d

j

p

m

n

i

o

p

m

n

i

o

not connected

connected

CSE 373 23SP 10

Directed vs Undirected; Acyclic vs Cyclic

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed: Undirected:

CSE 373 23SP 11

Vertex & Edge Labels

Labeled and Weighted Graphs

Edge Labels

a

b

c

d

Vertex Labels

b

d

c

e

a

Numeric Edge Labels
(Edge Weights)

1

2

3

1

2

3

4

5

1

a

b

c

d

CSE 373 23SP 12

Multi-Variable Analysis
● So far, we thought of everything as being in terms of some single

argument “n” (sometimes its own parameter, other times a size)
○ But there’s no reason we can’t do reasoning in terms of multiple inputs!

● Why multi-variable?
○ Remember, algorithmic analysis is just a tool to help us understand code.

Sometimes, it helps our understanding more to build a Oh/Omega/Theta
bound for multiple factors, rather than handling those factors in case
analysis.

● With graphs, we usually do our reasoning in terms of:
○ n (or |V|): total number of vertices (sometimes just call it V)
○ m (or |E|): total number of edges (sometimes just call it E)
○ deg(u): degree of node u (how many outgoing edges it has)

CSE 373 23SP 13

Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0
otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:

𝚯(1)

𝚯(1)

𝚯(1)

𝚯(n)

𝚯(n)

𝚯(n * n)

CSE 373 23SP 14

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0
otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:

Adjacency List
A

B

C

D

Linked Lists

0

1

2

3

A

B

C

D A

B C

B D

𝚯(1)

𝚯(deg(u))

𝚯(deg (u))

𝚯(deg(u))

𝚯(n + m)
𝚯(n + m)

CSE 373 23SP 15

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Adjacency List
A

B

C

D

Hash Tables

0

1

2

3

A

B

C

D

C

D

A

B

B

In an adjacency matrix a[u][v] is 1 if
there is an edge (u,v), and 0
otherwise.
Worst-case Time Complexity
(|V| = n, |E| = m):

Add Edge:
Remove Edge:
Check edge exists from (u,v):
Get outneighbors of u:
Get inneighbors of u:

Space Complexity:

𝚯(1)

𝚯(1)

𝚯(1)

𝚯(deg(u))
𝚯(n)

𝚯(n + m)

CSE 373 23SP 16

Tradeoffs

Adjacency Matrices take more space, why would you use them?
● For dense graphs (where m is close to n²), the running times will be close
● And the constant factors can be much better for matrices than for lists
● Sometimes the matrix itself is useful (“spectral graph theory”)

What’s the tradeoff between using linked lists and hash tables for the list
of neighbors?
● A hash table still might hit a worst-case
● And the linked list might not

○ Graph algorithms often just need to iterate over all the neighbors, so you might get a
better guarantee with the linked list

CSE 373 23SP 17

373: Graph Implementations

For this class, unless we say otherwise, we’ll assume the hash tables
operations on graphs are all O(1)
● Because you can probably control the keys

Unless we say otherwise, assume we’re using the hash table approach

CSE 373 23SP 18

Questions?
relevant ideas for today
- vertices, edges, definitions
- graphs model relationships between real data (you can choose

your vertices and edges to
- different graph implementations exist

CSE 373 23SP 19

Introduction to Graphs
Graph Modelling

CSE 373 23SP 20

Some examples

● For each of the following think about what you should choose for vertices and
edges.

● The internet

● Family tree

● Input data for the “6 Degrees of Kevin Bacon” game

● Course Prerequisites

● Ways to walk between UW buildings

Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Directed, since hyperlinks go in one direction

Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Directed, since hyperlinks go in one direction

Vertices: actors. Edges: movies

Undirected, a both actor would need to be in the movie for the edge to be added

Vertices: courses. Edge: from a to b if a is a prereq for b.

Directed, since one course comes before the other

Vertices: buildings. Edges: A street name or walkway that connects 2 buildings

Undirected, since each route can be walked both ways

CSE 373 23SP 21

Graph Modeling

SCENARIO
&

QUESTION TO
ANSWER

ANSWER!

MODEL AS A GRAPH RUN ALGORITHM

• Choose vertices
• Choose edges
• Directed/Undirected
• Weighted/Unweighted
• Cyclic/Acyclic

…

• Just visit every node?
• BFS or DFS

• s-t Connectivity?
• BFS or DFS

• Unweighted shortest path?
• BFS

• Weighted shortest path?
• Dijkstra’s

• Minimum Spanning Tree?
• Prim’s or Kruskal’s

Often need to refine
original model as you
work through details of
algorithm

Many ways to model any
scenario with a graph, but
question motivates which
data is important

CSE 373 23SP 22

Graph Modeling Activity

Note Passing - Part I
Imagine you are an American High School student. You have a
very important note to pass to your crush, but the two of you
do not share a class so you need to rely on a chain of friends to
pass the note along for you. A note can only be passed from
one student to another when they share a class, meaning when
two students have the same teacher during the same class
period.

Unfortunately, the school administration is not as romantic as
you, and passing notes is against the rules. If a teacher sees a
note, they will take it and destroy it. Figure out if there is a
sequence of handoffs to enable you to get your note to your
crush.

How could you model this situation as a graph?

 Period 1 Period 2 Period 3 Period 4

You Smith Patel Lee Brown

Anika Smith Lee Martinez Brown

Bao Brown Patel Martinez Smith

Carla Martinez Jones Brown Smith

Dan Lee Lee Brown Patel

Crush Martinez Brown Smith Patel

students teachers

CSE 373 23SP 23

Possible Design
●Vertices

○ Students
○ Fields: Name, have note

●Edges
○ Classes shared by students
○ Not directed
○ Could be left without weights
○ Fields: vertex 1, vertex 2, teacher, period

You

Anika

Carla

Bao

Dan
Crush

Smith, 1

M
artinez, 1

Patel, 2

Lee, 2

M
ar

ti
ne

z,
 3

Br
ow

n,
 3

Smith
, 4

Patel, 4

You

A

B

C

D

Crush

A B

B DYou

A CYou

D CrushB

C CrushA

C D

 Adjacency List

 Algorithm

 BFS or DFS to see if you and your Crush are connected

CSE 373 23SP 24

More Design

Note Passing - Part II
Now that you know there exists a way to get your note to your crush, we can work on picking the best hand
off path possible.

Thought Experiments:
1. What if you want to optimize for time to get your crush the note as early in the day as possible?

- How can we use our knowledge of which period students share to calculate for time knowing that
period 1 is earliest in the day and period 4 is later in the day?

- How can we account for the possibility that it might take more than a single school day to deliver the
note?

2. What if you want to optimize for rick avoidance to make sure your note only gets passed in classes least
likely for it to get intercepted?

- Some teachers are better at intercepting notes than others. The more notes a teacher has intercepted,
the more likely it is they will take yours and it will never get to your crush. If we knew how many notes
each teacher has intercepted how might we incorporate that into our graph to find the least risky route?

CSE 373 23SP 25

Optimize for Time

You

Anika

Carla

Bao

Dan
Crush

1

1
2

2
3

34

4

1. Add the period number to each edge as its weight
2. Run Dijkstra’s from You to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 2 You 5

Carla 6 Dan 3

Dan 3 Anika 2

Crush 7 Carla 4*

*The path found wraps around to a new school day because the
path moves from a later period to an earlier one
- We can change our algorithm to check for wrap arounds and try
other routes

“Distance” will represent the sum of which periods the note is passed in, because smaller period values are
earlier in the day the smaller the sum the earlier the note gets there except in the case of a “wrap around”

CSE 373 23SP 26

Optimize for Risk

You

Anika

Carla

Bao

Dan
Crush

1

3
2

4
3

51

4

1. Add the number of
letters intercepted by
the teacher to each
edge as its weight

2. Run Dijkstra’s from You
to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 4 Anika 2

Carla 5 Bao 3

Dan 10 Carla 5

Crush 8 Carla 4

Teacher
Notes

Intercepted

Smith 1

Martinez 3

Lee 4

Brown 5

Patel 2

“Distance” will represent the sum of notes intercepted across the
teachers in your passing route. The smaller the sum of notes the
“safer” the path.

CSE 373 23SP 27

Graph Modeling Activity

Party Planning
Imagine you are planning a party for your friend Steven. You
are trying to figure out who you should invite from his big
group of friends.

You want to invite as many people as possible, but you only
want to invite either people he knows or friends of his friends,
aka if they have at least one mutual friend.

You also don’t want to invite two people if they dislike each
other.

How could you model this situation as a graph?

Steven

Ali

Taylor

Lucy

Sasha

Bob

Johnny

Paul

Phoebe

Julie

Daisy

Joni

Margot

Melissa

Julien

Raven

Derrick

CSE 373 23SP 28

Graph Modeling Activity

Movie Theater Marathon
Imagine (for some reason) your goal for the day is to watch as
many movies as possible at your local movie theater.

Your rules are that you have to be there for the start of the
trailers (aka when the listed movie time is) and can’t leave a
movie until it is completely finished (aka after the listed
runtime).

How would you model this situation as a graph?

CSE 373 23SP 29

Questions?

CSE 373 23SP 30

That’s all!

