I_e Ctu re 1 2 . Tri eS /ilsgiis;nDsata Structures and

CSE 373 23SP

Slido Event #3322291
https://app.sli.do/event/1LR

An nouncements NvaVi9LATb1I9RWGiL

Practice Midterms Posted

https://courses.cs.washington.edu/courses/cse373/23sp/#04-28
Project 2 Due Wednesday

Exercise 3 Due Monday

Exercise 4 Releases Monday

CSE 373 235P

https://courses.cs.washington.edu/courses/cse373/23sp/#04-28
https://app.sli.do/event/1LRNfJyVj9LATb179RWGjL
https://app.sli.do/event/1LRNfJyVj9LATb179RWGjL

3

CSE 373 23SP

2-3 Insertions Insert 12 and 13 into the following 2-3 tree

14 16

10 12 15 18
12 14 16

10 13 15 18

14 | 16
10 | 12 | 13 15 18
14
12 16
10 13 15 18

2-3 Trees

PROS

e All operations on 2-3 Tree

CSE 373 235P

have a logarithmic worst case
Because these trees are always
balanced!

Maintaining balance doesn't
require complex rotations
Storing multiple values per
node improves runtime
constants because of memory
locality

CONS

No height triggered
balancing means 2-3 trees
stay a little less balanced
than AVLs on average
Multiple node types cause
implementation complexity
o Make all nodes 2 nodes
and you have more
unused space

2-3 insert () code

class Node {
int[] keys;
Node[] children;
int numKeys;
boolean isLeaf;

}

public void insertNonFull (int key) { public void splitChild(int i, Node vy) {
int i = numKeys - 1; Node z = new Node(y.order, y.isLeaf);
if (isLeaf) { z . .numKeys = order - 1;
while (1 >= 0 && keys[i] > key) { for (int 3 = 0; j < order - 1; j++) {
keys[i + 1] = keys[i]; z.keys[]j] = y.keys[] + order];
i--; }
} if (!'y.isLeaf) {
keys[i + 1] = key; for (int 7 = 0; Jj < order; J++) {
numKeys++; z.children[j] = y.children[] + order];
} else { }
while (i >= 0 && keys[i] > key) { }
i--; y.numKeys = order - 1;
} for (int 7 = numKeys; j >= 1 + 1; j--) {
if (children[i + 1].numKeys == 2 * order - 1) { children[j + 1] = children([j];
splitChild(i + 1, children[i + 1]); }
if (keys[i + 1] < key) { children[i + 1] = z;
i++; for (int j = numKeys - 1; j >= i; j--) {
} keys([j + 1] = keys[j];
} }
children[i + 1].insertNonFull (key); keys[i] = y.keys[order - 1];
} numKeys++;

} }
CSE 373 235P

2-3 Trees

PROS

e All operations on 2-3 Tree

CSE 373 235P

have a logarithmic worst case
Because these trees are always
balanced!

Maintaining balance doesn't
require complex rotations
Storing multiple values per
node improves runtime
constants because of memory
locality

CONS

No height triggered
balancing means 2-3 trees
stay a little less balanced
than AVLs on average
Multiple node types cause
implementation complexity
o Make all nodes 2 nodes
and you have more
unused space

All paths from a node to the NULL
descendants contain the same number

Meet Red Black Trees of beck ndes

Black-Height = 2

1. Every node has a color either red or black.

2. The root of the tree is always black.

3. There are no two adjacent red nodes (A red node cannot have a red
parent or red child).

4. Every path from a node (including root) to any of its descendants
NULL nodes has the same number of black nodes.

5. Every leaf (e.i. NULL node) must be colored BLACK.

Following are NOT possible Following are possible
3-noded Red-Black Trees . Red-Black Trees with 3 nodes
NIL .
NIL .
Violates Violates Violates s NIL. NILNIL. NIL ML LA L
Property 4 Property 4 Property 3 =

CSE 373 23SP

Red Black Insertions

Insertion cases:

0. Node is the root
Color node black

1. Node's uncle is red
recolor

2. Node’s uncle is black (Triangle)
Rotate node’s parent

3. Node’s uncle is black (line)
Rotate nodes’ grandparent & recolor

Red Black Tree Insertions (Video 5min)

CSE 373 235P

https://www.youtube.com/watch?v=A3JZinzkMpk

Node's uncle is red

Recolor parent, uncle and grandparent

case 1:7.uncle = red case 1:Z.uncle = red

" uncle

CSE 373 235P

Uncle is black (triangle)

Rotate inserted Nodes parent in opposite direction of inserted node

case 2 : Z.uncle = black (triangle) case 2 : Z.uncle = black (triangle)

s L

CSE 373 235P

10

Uncle is black (line)

Rotate node’s grandparent, then recolor

case 3 : Z.uncle = black (line)

CSE 373 235P

case 3 : Z.uncle = black (line)

11

AVL vs Red Black Trees

Red Black Trees:

- Easier to implement than AVL
Left Leaning Red Black trees are even easier to implement

- Better performance for insertion and deletion because the
balancing mechanism is less strict than AVL

AVL Trees:

- Have better look up performance because of their strict
balance requirements

CSE 373 235P

12

A translation of 2 3 trees using nodes with

Left Leaning Red Black Trees

only 1value

Red links connect two nodes that
would exist within the same node in a
2-3 tree

Black links are “standard” connections
Red links are always on the left

A “balanced” LLRB has the same

number of black links to leaf
Red links don't count towards path length

A proposed improvement to the Red
Black tree from its original designer
Robert Sedgewick

CSE 373 235P

https://sedgewick.io/wp-content/themes/sedgewick/papers/2008LLRB.pdf

13

https://sedgewick.io/wp-content/themes/sedgewick/papers/2008LLRB.pdf

Valid Left Leaning Red Black Tree?

N

LNy

Right red link Different length paths Sequential Red nodes

7N

CSE 373 235P

LLRB insert () code

private static final boolean RED = true;
private static final boolean BLACK = false;

Regular BST code
LLRB additions

public class LLRB<Key extends Comparable<Key>, Value> {

private Node root;
private class Node {
private Key key;
private Value val;
private Node left, right;
private boolean color;
Node (Key key, Value val) {
this.key = key;
this.val = val;
this.color = RED;

public Value search (Key key) {

Node x = root;

while (x != null) {
int cmp = key.compareTo (x.key);
if (cmp == 0) return x.val;

else if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
}

return null;
CSE 373 23SP }

public void insert (Key key, Value value) {

root = insert(root, key, value);
root.color = BLACK;

private Node insert (Node h, Key key, Value value) {

if (h == null) return new Node (key, value);

if (isRed(h.left) && isRed(h.right)) colorFlip(h);
int cmp = key.compareTo (h.key);

if (cmp == 0) h.val = value;

else if (cmp < 0) h.left = insert(h.left, key, value);

else h.right = insert (h.right, key, wvalue);

if (isRed(h.right) && 'isRed(h.left)) h = rotatelLeft(h);

if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
return h;

15

Lots of cool Selt-Balancing BSTs out there!

Popular self-balancing BSTs include:

AVL tree

Splay tree

2-3 tree

AA tree (Not covered in this class, but several are in

Red-black tree the textbook and all of them are online!)
Scapegoat tree

Treap

(From https://en.wikipedia.org/wiki/Self-balancing binary search_tree#lmplementations)

CSE 373 235P

16

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations

‘ Trie Introduction

mplementation
Prefix Matching
nterview Question Prep

CSE 373 23SP

17

The Trie: A Specialized Data Structure

e Tries view its keys as:
a sequence of characters
some (hopefully many!) sequences share common

prefixes ‘

Set ADT Trie

CSE 373 235P

18

Trie: An Introduction

e Each level of the tree represents an index in the string
Children at that level represent possible
characters at that index
e This abstract trie stores the set of strings:
awls, a, sad, same, sap, sam
e How to deal with a and awls?
Mark which nodes complete a string (shown in purple)

CSE 373 235P

19

Searching in Tries

Two ways to fail a contains() check:

1. If we fall off the tree
2. If the final node isn’t purple (not a key)

Input String Fall Off? / Is Key? m

contains (“sam”) hit/ purple
contains (Y“sa”) hit / white
contains (Y“a”) hit / purple

contains (“saqg”) fell off /n/a

CSE 373 235P

True
False
True

False

20

Keys as “a sequence of characters” (1 of 2)

e Most dictionaries treat their keys as an “atomic blob™: you
can't disassemble the key into smaller components
e Tries take the opposite view: keys are a sequence of characters

Strings are made of Characters
e But “characters” don't have to come from the Latin alphabet
Character includes most Unicode codepoints (eg, & #E)

List<E>
bytel]

CSE 373 235P 21

Keys as “a sequence of characters” (2 of 2)

e But “characters” don't have to come from the Latin alphabet
Character includes most Unicode codepoints (eg Z&#E)
List<E>
byte]

e Tries are defined by 3 types instead of 2:

An “alphabet”: the domain of the characters
A “key”: a sequence of “characters” from the alphabet
A “value”: the usual Dictionary value

CSE 373 235P

22

CSE 373 23SP

Trie Introduction
mplementation

Prefix Matching
nterview Question Prep

23

WA/ UNIVERSITY of WASHINGTON

Decimal Hexadecimal Binary Octal Char Decimal Hexadecimal Binary Octal Char | Decimal Hexadecimal Binary Octal Char
0 0 0 0 INULL} 48 30 110000 60 0 96 60 1100000 140 °
1 1 1 1 ISTART OF HEADING) 49 31 110001 61 1 97 61 1100001 141 a
2 2 10 2 ISTART OF TEXT] 50 32 110010 62 2 98 62 1100010 142 b
3 3 11 3 [END OF TEXT] 51 33 110011 63 3 99 63 1100011 143 ¢
Rl 4 100 4 [END OF TRANSMISSION] 52 34 110100 64 a 100 64 1100100 144 d
5 5 101 5 JENQUIRY] 53 35 110101 65 5 101 65 1100101 145 e
6 6 110 6 [ACKNOWLEDGE] 54 36 110110 66 6 102 66 1100110 146 ¢
7 7 111 7 [BELL] 55 37 110111 67 7 103 67 1100111 147 g
8 8 1000 10 JBACKSPACE] 56 38 111000 70 8 104 68 1101000 150 h
9 9 1001 11 [HORIZONTAL TAB] 57 39 111001 71 9 105 69 1101001 151 |
10 A 1010 12 [LINE FEED) 58 3A 111010 72 H 106 B6A 1101010 152 |
11 B 1011 13 [VERTICAL TAB] 59 3B 111011 73 3 107 6B 1101011 153 k
12 C 1100 14 [FORM FEED) 60 3c 111100 74 < 108 6C 1101100 154 |
13 D 1101 15 [CARRIAGE RETURN] 61 ElS) 111101 75 = 109 6D 1101101 155 m
14 E 1110 16 [SHIFT OUT] 62 3E 111110 76 > 110 6E 1101110 156 n
15 F 1111 17 ISHIFT IN] 63 3F 111111 77 ? 111 6F 1101111 157 o
16 10 10000 20 [DATA LINK ESCAPE] 64 40 1000000 100 @ 112 70 1110000 160 p
17 11 10001 21 IDEVICE CONTROL 1] 65 41 1000001 101 A 113 71 1110001 161 q
18 12 10010 22 IDEVICE CONTROL 2] 66 42 1000010 102 B 114 72 1110010 162 r
19 13 10011 23 [DEVICE CONTROL 3] 67 43 1000011 103 C 115 73 1110011 163 s
20 14 10100 24 [DEVICE CONTROL 4] 68 a4 1000100 104 D 116 74 1110100 164 ¢t
21 15 10101 25 INEGATIVE ACKNOWLEDGE] | 69 a5 1000101 105 E 117 75 1110101 165 w
22 16 10110 26 [SYNCHRONOUS IDLE] 70 46 1000110 106 F 118 76 1110110 166 v
23 17 10111 27 [ENG OF TRANS. BLOCK] 71 47 1000111 107 G 119 17 1110111 167 w
24 18 11000 30 [CANCEL) 2 a8 1001000 110 H 120 78 1111000 170 x
25 19 11001 31 JEND OF MEDIUM] 73 49 1001001 111 1 121 79 1111001 171y
26 14 11010 32 [SUBSTITUTE] 74 44 1001010 112) 122 7A 1111010 172 2
27 1B 11011 33 JESCAPE] 75 48 1001011 113 K 123 B 1111011 173 |
28 1C 11100 34 IFILE SEPARATOR] 76 4C 1001100 114 L 124 7C 1111100 174 |
29 1D 11101 35 [GROUP SEPARATOR] 77 4D 1001101 115 ™ 125 D 1111101 175 }
30 1E 11110 36 IRECORD SEPARATOR] 78 4E 1001110 116 N 126 7E 1111110 176 ~
31 1F 11111 37 [UNIT SEPARATOR] 79 4F 1001111117 O 127 TF 1111111 177 [DEL]
32 20 100000 40 ISPACE] 80 50 1010000 120 P

33 21 100001 41 ! 81 51 1010001 121 Q

34 22 100010 42 > 82 52 1010010 122 R

35 23 100011 43 # 83 53 1010011 123 S

36 24 100100 44 $ 84 54 1010100 124 T

37 25 100101 45 % 85 55 1010101 125 U

38 26 100110 46 & 86 56 1010110126 V

39 27 100111 47 : 87 57 1010111 127 W

40 28 101000 50 (B8 58 1011000 130 X

41 29 101001 51) 89 59 1011001 131 Y

42 2A 101010 52 b 20 SA 1011010132 Z

43 2B 101011 53 + 91 5B 1011011 133 (

44 2C 101100 54 . 92 5C 1011100 134 \

45 2D 101101 55 . 93 50 1011101 135]

46 2E 101110 56 . 94 SE 1011110136 ~#

47 2F 101111 57 { 95 5F 1011111 137 _

Simple Trie Implementation*

public class TrieSet {
private Node root;

private static class Node {

private char ch;
private boolean 1sKey;
private Map<char, Node> next;
private Node (char c¢, boolean b) {
ch = ¢c;
1sKey = b;
next = new HashMap() ;

CSE 373 235P

25

Node private static class Node {
ch a private char ch;
isKey true private boolean isKey;
private Map<char, Node> next;
next
}
Map 7
Y ‘\\l\\\\§—_ﬁ‘ Node

ch y

isKey false

next e >

CSE 373 235P

Simple Trie Node Implementation

26

Simple Trie Implementation

public class TrieSet {
private Node root;

private static class Node {
private char ch;
private boolean 1sKey; private
Map<char, Node> next;
private Node (char ¢, boolean b)
ch = ¢c;
1sKey = b;
next = new HashMap() ;

{

CSE 373 235P

27

CSE 373 23SP

Trie Introduction
mplementation

Prefix Matching
nterview Question Prep

28

CSE 373 235P

Trie-Specific Operations

The main appeal of tries is prefix matching!
Why? Because they view their keys as sequences that can

have prefixes
Longest prefix

longestPrefi1xOf ("sample")

Want: {"sam" }
Prefix match

findPrefix ("sa")

Want: {"sad",

1A Sam" ,

"same" ,

"Sap"}

29

Related Problem: Collecting Trie Keys

e Imagine an algorithm that collects all the keys in a trie:

collect () :
["a", "anS", "Sad", "Sam", "Same", "Sap"]

e It could be implemented as follows:

CSE 373 235P

\\Create an empty list of results x

\\For each character ¢ in root.next.keys():
\\call collectHelper(c, X, root.next.get (c))

\\return x

30

Summary

e Atrie data structure implements the Dictionary and Set ADTs

e Tries have many different implementations
Could store HashMap/TreeMap/any-dictionary within nodes
Much more exotic variants change the trie's representation, such as
the Ternary Search Trie
e Tries store sequential keys
.. which enables very efficient prefix operations like findPrefix

CSE 373 235P 331

CSE 373 23SP

Trie Introduction
mplementation

Prefix Matching
nterview Question Prep

32

CSE 373 235P

Interview Prep

Any time you see word/letter parsing!
fast run time with tries (quick word / letter lookup)
not just for interview, but real-world applications

Interviewer’s favorite “gimmick” question
came up for me

Example Problem:

Find first ‘k” maximum occurring words in a given set of strings
see if you can do this problem on your own

33

https://www.techiedelight.com/find-first-k-maximum-occurring-words-given-set-strings/

‘ Questions?

CSE 373 23SP

34

5 Your toolbox so far...

ADT

List — flexibility, easy movement of elements within structure

Stack - optimized for first in last out ordering

Queue - optimized for first in first out ordering

Dictionary (Map) - stores two pieces of data at each entry <- |t’s all about data baby!

. SUPER common in comp sci
Data Structure Implementation . Databases

Array — easy look up, hard to rearrange - Network router tables
Linked Nodes - hard to look up, easy to rearrange - Compilers and Interpreters
Hash Table - constant time look up, no ordering of data

BST - efficient look up, possibility of bad worst case

AVL Tree - efficient look up, protects against bad worst case, hard to
implement

CSE 373 235P 35

Why are we so obsessed with Dictionaries?
When dealing with data:
* Adding data to your collection
e Getting data out of your collection
* Rearranging data in your collection

state

Set of items & keys
Count of items

behavior

put(key, item) add item to

collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use

remove(key) remove item and
associated key

size() return count of items

CSE 373 235P

Dictionaries

Operation ArrayList LinkedList HashTable BST AVLTree
best | O(1) o(1) o(1) o(1) o(1)
put (key, value)

worst | O(n) O(n) O(n) O(n) O(log n)

B best | O(1) o(1) o(1) o(1) o(1)
sertiey) Morst | ©(n) e(n) o(n) o(n) O(log n)
) best | O(1) o(1) o(1) o(1) O(log n)
remeve eyl M orst | ©(m) O(n) o(n) o(n) O(log n)

36

Design Decisions

Before coding can begin engineers must carefully consider the
design of their code will organize and manage data

Things to consider:

e What functionality is needed?
What operations need to be supported?
Which operations should be prioritized?

e What type of data will you have?
What are the relationships within the data?
How much data will you have?
Will your data set grow?
Will your data set shrink?

e How do you think things will play out?
How likely are best cases?
How likely are worst cases?

CSE 373 235P

Example: Class Gradebook

You have been asked to create a new system for organizing
students in a course and their accompanying grades

What type of data will you have?

What functionality is needed? . , o
What are the relationships within the data?

What operations need to be supported?

Add students to course Organize students by name, keep grades in time order...
mm) Add grade to student’s record How much data will you have?

Update grade already in student’s record A couple hundred students, < 20 grades per student

Remove student from course Will your data set grow? Alot at the beginning,

Will your data set shrink? Not much after that
How do you think things will play out?

How likely are best cases?

How likely are worst cases?

Lots of add and drops?
Lots of grade updates?

Students with similar identifiers?
CSE 373 23SP 38

Check if student is in course

— Find specific grade for student
Which operations should be prioritized?

Example: Class Gradebook

What data should we use to identify students? (keys)

o Student IDs - unique to each student, no confusion (or collisions)
o Names - easy to use, support easy to produce sorted by name

How should we store each student’s grades? (values)

o Array List — easy to access, keeps order of assignments
o Hash Table - super efficient access, no order maintained

Which data structure is the best fit to store students and their
grades?

o Hash Table - student IDs as keys will make access very efficient
o AVL Tree - student names as keys will maintain alphabetical order

CSE 373 235P

39

Practice: Music Storage

You have been asked to create a new system for organizing songs in a

music service. For each song you need to store the artist and how many
plays that song has.

What functionality is needed? Update number of plays for a song

Which operations should be prioritized? Add a new artist and their songs to the service
Find an artist’s most popular song

Find service’s most popular artist

What type of data will you have? more. ..

What are the relationships within the data?
How much data will you have? Artists need to be associated with their songs,
Will your data set grow? songs need t be associated with their play counts
Will your data set shrink? Play counts will get updated a lot

New songs will get added regularly

How do you think things will play out?

How likely are best cases? Some artists and songs will need to be accessed a lot more than others
How likely are worst cases? Artist and song names can be very similar

CSE 373 235P

Practice: Music Storage

e How should we store songs and their play counts?
Hash Table - song titles as keys, play count as values, quick

access for updates
Array List — song titles as keys, play counts as values, maintain

order of addition to system

e How should we store artists with their associated songs?

Hash Table - artist as key,
m Hash Table of their (songs, play counts) as values

m AVL Tree of their songs as values
AVL Tree - artists as key, hash tables of songs and counts as

values

CSE 373 23SP

41

‘ Questions?

CSE 373 23SP

42

‘ That's all!

CSE 373 23SP

43

