
 1CSE 373 23SP

Lecture 12: Tries CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Announcements

Practice Midterms Posted

https://courses.cs.washington.edu/courses/cse373/23sp/#04-28

Project 2 Due Wednesday

Exercise 3 Due Monday

Exercise 4 Releases Monday

Slido Event #3322291
https://app.sli.do/event/1LR
NfJyVj9LATb179RWGjL

https://courses.cs.washington.edu/courses/cse373/23sp/#04-28
https://app.sli.do/event/1LRNfJyVj9LATb179RWGjL
https://app.sli.do/event/1LRNfJyVj9LATb179RWGjL

CSE 373 23SP 3

2-3 Insertions Insert 12 and 13 into the following 2-3 tree

15 18

8

6 14

3 7 10

16

12 15 18

8

6 14

3 7 10

16

12 13

15 18

8

6 14

3 7 10

16

13

12

15 18

8

6

14

3 7 10

16

13

12

CSE 373 23SP 4

2-3 Trees

● All operations on 2-3 Tree
have a logarithmic worst case
○ Because these trees are always

balanced!
● Maintaining balance doesn’t

require complex rotations
● Storing multiple values per

node improves runtime
constants because of memory
locality

● No height triggered
balancing means 2-3 trees
stay a little less balanced
than AVLs on average

● Multiple node types cause
implementation complexity
○ Make all nodes 2 nodes

and you have more
unused space

PROS CONS

CSE 373 23SP 5

2-3 insert() code
class Node {
 int[] keys;
 Node[] children;
 int numKeys;
 boolean isLeaf;
...
}

public void splitChild(int i, Node y) {
 Node z = new Node(y.order, y.isLeaf);
 z.numKeys = order - 1;
 for (int j = 0; j < order - 1; j++) {
 z.keys[j] = y.keys[j + order];
 }
 if (!y.isLeaf) {
 for (int j = 0; j < order; j++) {
 z.children[j] = y.children[j + order];
 }
 }
 y.numKeys = order - 1;
 for (int j = numKeys; j >= i + 1; j--) {
 children[j + 1] = children[j];
 }
 children[i + 1] = z;
 for (int j = numKeys - 1; j >= i; j--) {
 keys[j + 1] = keys[j];
 }
 keys[i] = y.keys[order - 1];
 numKeys++;
}

public void insertNonFull(int key) {
 int i = numKeys - 1;
 if (isLeaf) {
 while (i >= 0 && keys[i] > key) {
 keys[i + 1] = keys[i];
 i--;
 }
 keys[i + 1] = key;
 numKeys++;
 } else {
 while (i >= 0 && keys[i] > key) {
 i--;
 }
 if (children[i + 1].numKeys == 2 * order - 1) {
 splitChild(i + 1, children[i + 1]);
 if (keys[i + 1] < key) {
 i++;
 }
 }
 children[i + 1].insertNonFull(key);
 }
}

CSE 373 23SP 6

2-3 Trees

● All operations on 2-3 Tree
have a logarithmic worst case
○ Because these trees are always

balanced!
● Maintaining balance doesn’t

require complex rotations
● Storing multiple values per

node improves runtime
constants because of memory
locality

● No height triggered
balancing means 2-3 trees
stay a little less balanced
than AVLs on average

● Multiple node types cause
implementation complexity
○ Make all nodes 2 nodes

and you have more
unused space

PROS CONS

CSE 373 23SP 7

Meet Red Black Trees

1. Every node has a color either red or black.
2. The root of the tree is always black.
3. There are no two adjacent red nodes (A red node cannot have a red

parent or red child).
4. Every path from a node (including root) to any of its descendants

NULL nodes has the same number of black nodes.
5. Every leaf (e.i. NULL node) must be colored BLACK.

8

5 15

12

9 13 23

19

All paths from a node to the NULL
descendants contain the same number
of black nodes

Black-Height = 2

CSE 373 23SP 8

Red Black Insertions

Insertion cases:

0. Node is the root
a. Color node black

1. Node’s uncle is red
b. recolor

2. Node’s uncle is black (Triangle)
c. Rotate node’s parent

3. Node’s uncle is black (line)
d. Rotate nodes’ grandparent & recolor

Red Black Tree Insertions (Video 5min)

https://www.youtube.com/watch?v=A3JZinzkMpk

CSE 373 23SP 9

Node’s uncle is red

Recolor parent, uncle and grandparent

CSE 373 23SP 10

Uncle is black (triangle)

Rotate inserted Nodes parent in opposite direction of inserted node

CSE 373 23SP 11

Uncle is black (line)

Rotate node’s grandparent, then recolor

CSE 373 23SP 12

AVL vs Red Black Trees

Red Black Trees:

- Easier to implement than AVL
- Left Leaning Red Black trees are even easier to implement

- Better performance for insertion and deletion because the
balancing mechanism is less strict than AVL

AVL Trees:

- Have better look up performance because of their strict
balance requirements

CSE 373 23SP 13

Left Leaning Red Black Trees

A translation of 2 3 trees using nodes with
only 1 value

- Red links connect two nodes that
would exist within the same node in a
2-3 tree

- Black links are “standard” connections
- Red links are always on the left
- A “balanced” LLRB has the same

number of black links to leaf
- Red links don’t count towards path length

A proposed improvement to the Red
Black tree from its original designer
Robert Sedgewick

4 9 4

9

=

4

9

https://sedgewick.io/wp-content/themes/sedgewick/papers/2008LLRB.pdf

https://sedgewick.io/wp-content/themes/sedgewick/papers/2008LLRB.pdf

CSE 373 23SP 14

Valid Left Leaning Red Black Tree?

Right red link

1

11

1

3

1

11

6

5 7

Different length paths

6

9

4

Sequential Red nodes

CSE 373 23SP 15

LLRB insert() code
public class LLRB<Key extends Comparable<Key>, Value> {
 private static final boolean RED = true;
 private static final boolean BLACK = false;
 private Node root;
 private class Node {
 private Key key;
 private Value val;
 private Node left, right;
 private boolean color;
 Node(Key key, Value val) {
 this.key = key;
 this.val = val;
 this.color = RED;
 }
 }

 public Value search(Key key) {
 Node x = root;
 while (x != null) {
 int cmp = key.compareTo(x.key);
 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 }
 return null;
 }

public void insert(Key key, Value value) {
 root = insert(root, key, value);
 root.color = BLACK;
}

private Node insert(Node h, Key key, Value value) {
 if (h == null) return new Node(key, value);
 if (isRed(h.left) && isRed(h.right)) colorFlip(h);
 int cmp = key.compareTo(h.key);
 if (cmp == 0) h.val = value;
 else if (cmp < 0) h.left = insert(h.left, key, value);
 else h.right = insert(h.right, key, value);
 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 return h;
}

Regular BST code
LLRB additions

CSE 373 23SP 16

Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:
● AVL tree
● Splay tree
● 2-3 tree
● AA tree
● Red-black tree
● Scapegoat tree
● Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in
the textbook and all of them are online!)

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations

CSE 373 23SP 17

Trie Introduction
Implementation
Prefix Matching
Interview Question Prep

CSE 373 23SP 18

CSE332, Spring 2021L02: Dictionary ADT, Tries

The Trie: A Specialized Data Structure

a

md p

e

w

l

s

Trie

sa● sap
● sad
● awls
● a
● same
● sam

Set ADT

● Tries view its keys as:
○ a sequence of characters
○ some (hopefully many!) sequences share common

prefixes

CSE 373 23SP 19

CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie: An Introduction

● Each level of the tree represents an index in the string
○ Children at that level represent possible
○ characters at that index

● This abstract trie stores the set of strings:
○ awls, a, sad, same, sap, sam

● How to deal with a and awls?
○ Mark which nodes complete a string (shown in purple) a

md p

e

w

l

s

sa

CSE 373 23SP 20

CSE332, Spring 2021L02: Dictionary ADT, Tries

Searching in Tries

Input String Fall Off? / Is Key? Result

contains(“sam”) hit / purple True

contains(“sa”) hit / white False

contains(“a”) hit / purple True

contains(“saq”) fell off / n/a False

Two ways to fail a contains() check:

1. If we fall off the tree
2. If the final node isn’t purple (not a key)

a

md p

e

w

l

s

sa

CSE 373 23SP 21

CSE332, Spring 2021L02: Dictionary ADT, Tries

Keys as “a sequence of characters” (1 of 2)

● Most dictionaries treat their keys as an “atomic blob”: you
can’t disassemble the key into smaller components

● Tries take the opposite view: keys are a sequence of characters
○ Strings are made of Characters

● But “characters” don’t have to come from the Latin alphabet
○ Character includes most Unicode codepoints (eg, 蛋糕)
○ List<E>
○ byte[]

CSE 373 23SP 22

CSE332, Spring 2021L02: Dictionary ADT, Tries

Keys as “a sequence of characters” (2 of 2)

● But “characters” don’t have to come from the Latin alphabet
○ Character includes most Unicode codepoints (eg 蛋糕)
○ List<E>
○ byte[]

● Tries are defined by 3 types instead of 2:
○ An “alphabet”: the domain of the characters
○ A “key”: a sequence of “characters” from the alphabet
○ A “value”: the usual Dictionary value

CSE 373 23SP 23

Trie Introduction
Implementation
Prefix Matching
Interview Question Prep

CSE332, Spring 2021L02: Dictionary ADT, Tries

CSE 373 23SP 25

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation*

 public class TrieSet {
 private Node root;

 private static class Node {
 private char ch;
 private boolean isKey;
 private Map<char, Node> next;
 private Node(char c, boolean b) {

 ch = c;
 isKey = b;
 next = new HashMap();

 }
 }

 }

a

md p

e

w

l

s

sa

CSE 373 23SP 26

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Node Implementation
private static class Node {
private char ch;
private boolean isKey;
private Map<char, Node> next;
...

}

ch a

isKey true

next

y

Node

Map

ch y

isKey false

next

Node

a …

y

CSE 373 23SP 27

CSE332, Spring 2021L02: Dictionary ADT, Tries

Simple Trie Implementation

public class TrieSet {
private Node root;

private static class Node {
private char ch;
private boolean isKey; private
Map<char, Node> next;
private Node(char c, boolean b) {
ch = c;
isKey = b;
next = new HashMap();

}
}

}

s

a

d

a

w

l

a s

a

d

w

l

...

...
...

...

...

...

... ...

CSE 373 23SP 28

Trie Introduction
Implementation
Prefix Matching
Interview Question Prep

CSE 373 23SP 29

CSE332, Spring 2021L02: Dictionary ADT, Tries

Trie-Specific Operations

● The main appeal of tries is prefix matching!
○ Why? Because they view their keys as sequences that can

have prefixes
● Longest prefix

○ longestPrefixOf("sample")
○ Want: {"sam"}

● Prefix match
○ findPrefix("sa")
○ Want: {"sad", "sam", "same", "sap"}

a

md p

e

w

l

s

sa

CSE 373 23SP 30

CSE332, Spring 2021L02: Dictionary ADT, Tries

Related Problem: Collecting Trie Keys

sa

w

\\Create an empty list of results x
\\For each character c in root.next.keys():

\\call collectHelper(c, x, root.next.get(c))
\\return x

● Imagine an algorithm that collects all the keys in a trie:
○ collect():

["a","awls","sad","sam","same","sap"]
● It could be implemented as follows:

CSE 373 23SP 31

CSE332, Spring 2021

31

L02: Dictionary ADT, Tries

Summary

● A trie data structure implements the Dictionary and Set ADTs
● Tries have many different implementations

○ Could store HashMap/TreeMap/any-dictionary within nodes
○ Much more exotic variants change the trie’s representation, such as

the Ternary Search Trie
● Tries store sequential keys

○ … which enables very efficient prefix operations like findPrefix

CSE 373 23SP 32

Trie Introduction
Implementation
Prefix Matching
Interview Question Prep

CSE 373 23SP 33

Interview Prep

● Any time you see word/letter parsing!
○ fast run time with tries (quick word / letter lookup)
○ not just for interview, but real-world applications

● Interviewer’s favorite “gimmick” question
○ came up for me

● Example Problem:
Find first ‘k’ maximum occurring words in a given set of strings
○ see if you can do this problem on your own

https://www.techiedelight.com/find-first-k-maximum-occurring-words-given-set-strings/

CSE 373 23SP 34

Questions?

CSE 373 23SP 35

Your toolbox so far…

ADT
○List – flexibility, easy movement of elements within structure
○Stack – optimized for first in last out ordering
○Queue – optimized for first in first out ordering
○Dictionary (Map) – stores two pieces of data at each entry

Data Structure Implementation
○Array – easy look up, hard to rearrange
○Linked Nodes – hard to look up, easy to rearrange
○Hash Table – constant time look up, no ordering of data
○BST – efficient look up, possibility of bad worst case
○AVL Tree – efficient look up, protects against bad worst case, hard to

implement

<- It’s all about data baby!
SUPER common in comp sci
- Databases
- Network router tables
- Compilers and Interpreters

CSE 373 23SP 36

Review: Dictionaries

Why are we so obsessed with Dictionaries?

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList HashTable BST AVLTree

put(key,value)
best 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1)

worst 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(log n)

get(key)
best 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1)

worst 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(log n)

remove(key)
best 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(log n)

worst 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(log n)

CSE 373 23SP 37

Design Decisions

Before coding can begin engineers must carefully consider the
design of their code will organize and manage data

Things to consider:

● What functionality is needed?
○ What operations need to be supported?
○ Which operations should be prioritized?

● What type of data will you have?
○ What are the relationships within the data?
○ How much data will you have?
○ Will your data set grow?
○ Will your data set shrink?

● How do you think things will play out?
○ How likely are best cases?
○ How likely are worst cases?

CSE 373 23SP 38

You have been asked to create a new system for organizing
students in a course and their accompanying grades

What type of data will you have?
What are the relationships within the data?

How much data will you have?

Will your data set grow?
Will your data set shrink?

How do you think things will play out?
How likely are best cases?
How likely are worst cases?

Example: Class Gradebook

What functionality is needed?
What operations need to be supported?

Add students to course

Add grade to student’s record

Update grade already in student’s record

Remove student from course

Check if student is in course

Find specific grade for student

Organize students by name, keep grades in time order…

A couple hundred students, < 20 grades per student

Which operations should be prioritized?

A lot at the beginning,
Not much after that

Lots of add and drops?
Lots of grade updates?
Students with similar identifiers?

CSE 373 23SP 39

Example: Class Gradebook

What data should we use to identify students? (keys)
○ Student IDs – unique to each student, no confusion (or collisions)
○ Names – easy to use, support easy to produce sorted by name

How should we store each student’s grades? (values)
○ Array List – easy to access, keeps order of assignments
○ Hash Table – super efficient access, no order maintained

Which data structure is the best fit to store students and their
grades?
○ Hash Table – student IDs as keys will make access very efficient
○ AVL Tree - student names as keys will maintain alphabetical order

CSE 373 23SP 40

Practice: Music Storage
You have been asked to create a new system for organizing songs in a
music service. For each song you need to store the artist and how many
plays that song has.

What functionality is needed?
• What operations need to be supported?
• Which operations should be prioritized?

What type of data will you have?
• What are the relationships within the data?
• How much data will you have?
• Will your data set grow?
• Will your data set shrink?

How do you think things will play out?
• How likely are best cases?
• How likely are worst cases?

Update number of plays for a song
Add a new song to an artist’s collection
Add a new artist and their songs to the service
Find an artist’s most popular song
Find service’s most popular artist

more…

Artists need to be associated with their songs,
songs need t be associated with their play counts
Play counts will get updated a lot
New songs will get added regularly

Some artists and songs will need to be accessed a lot more than others
Artist and song names can be very similar

CSE 373 23SP 41

Practice: Music Storage

● How should we store songs and their play counts?
○ Hash Table – song titles as keys, play count as values, quick

access for updates
○ Array List – song titles as keys, play counts as values, maintain

order of addition to system

● How should we store artists with their associated songs?
○ Hash Table – artist as key,

■ Hash Table of their (songs, play counts) as values
■ AVL Tree of their songs as values

○ AVL Tree – artists as key, hash tables of songs and counts as
values

CSE 373 23SP 42

Questions?

CSE 373 23SP 43

That’s all!

