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Warm Up

All false! 

Which of the following statements are FALSE?

Select all options that apply:
● A Big-Theta bound will exist for every function
● If a function is O(n²) it can’t also be Ω(n²)
● A piece of code whose model is f(n) = 3n + 6 has a simplified tight BigO of 

O(n2)
● The tight upper and lower bound of piece of code’s runtime growth is 

always the same complexity class

Slido Event #3504442
https://app.sli.do/event/7xn
q6sgX28GEKL7yH8PbAz 

https://app.sli.do/event/7xnq6sgX28GEKL7yH8PbAz
https://app.sli.do/event/7xnq6sgX28GEKL7yH8PbAz
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Announcements

● Project 1 is out
○ Due Wednesday April 12th

● Exercise 1 is out
○ Due Monday April 10th
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Questions?
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Case Analysis
Modeling Recursive Code
Summations
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Review: Algorithmic Analysis Roadmap

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-O

Asymptotic 
Analysis

RUNTIME 
FUNCTION

Code 
Modeling

CODE

1

2
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Case Study: Linear Search

int linearSearch(int[] arr, int toFind) {
   for (int i = 0; i < arr.length; i++) {
   if (arr[i] == toFind)

return i;
   }
   return -1;
}

2 3 9 4 5arr

toFind 2

2 3 9 4 5

toFind 8

i

 

arr

i

i i i i

CSE 373 SP 22 - CHAMPION
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Best Case Worst Case
On Lucky Earth On Unlucky Earth (where it’s 2020 every year)

2 3 9 4 5arr

toFind 2

i

2 3 9 4 5arr

toFind 8

i

f(n) = 3n + 1f(n) = 2

O(1)  Θ(1) O(n)  Θ(n)
After asymptotic analysis:After asymptotic analysis:
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Case Analysis

Case: a description of inputs/state for an algorithm that is specific enough to 
build a code model (runtime function) whose only parameter is the input size
● Case Analysis is our tool for reasoning about all variation other than n!
● Occurs during the code 🡪 function step instead of function 🡪 O/Ω/Θ step!

● Best Case = fastest that our code could finish on 
input of size n

● Worst Case = slowest that our code could finish on 
input of size n.

● Importantly, any position of toFind in arr 
could be its own case!
○ For this simple example, probably don’t care (they all 

still have bound O(n))
○ But intermediate cases will be important later

Worst

Best

Other Cases
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Caution: Common Misunderstanding

Best/Worst case is based on all variation other than value of n

Incorrect - based on specific values of n

● “The best case is when n=1, worst is when n=infinity” 
● “The best case is when front is null”
● “The best case is when overallRoot is null”
● “The best case is when n is an even number”

Correct - based on state of data structure regardless of n

● “The best case is when the node I’m looking for is at front, the 
worst is when it’s not in the list”

● “The best case is when the BST is perfectly balanced, the worst is 
when it’s a single line of nodes”
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Other cases
“Assume X won’t happen” case
● Assuming our array won’t need to resize is the most common example

“Average” case
● Assuming your input is random 
● Need to specify what the possible inputs are and how likely they are
● f(n) is now the average number of steps on a random input of size n

“In-practice” case
● This isn’t a real term (I just made it up)
● Making some reasonable assumptions about how the real-world is probably going to work
● We’ll tell you the assumptions and won’t ask you to come up with these assumptions on your 

own
● Then do worst-case analysis under those assumptions

All of these can be combined with any of O, Ω, and θ
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How to do case analysis

1. Look at the code, understand how thing could change 
depending on the state of input
● How can you exit loops early? 
● Can you return (exit the method) early?
● Are some if/else branches much slower than others?

2. Figure out what input values can cause you to hit the 
(best/worst) parts of the code.
● not to be confused with number of inputs

3. Now do the analysis like normal!



CSE 373 23SP  13

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-O

Asymptotic 
Analysis

OTHER CASE
FUNCTION

WORST CASE
FUNCTION

BEST CASE
FUNCTION

Case AnalysisCODE

2

Algorithmic Analysis Roadmap

for (i = 0; i < n; i++) {
  if (arr[i] == toFind) {
    return i;
  }
}
return -1;

f(n) = 2 O(n)

Θ(n)f(n) = 3n+1

Ω(n)

1
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Review Algorithmic Analysis Roadmap

for (i = 0; i < n; i++) {
  if (arr[i] == toFind) {
    return i;
  }
}
return -1;

 

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-O

Asymptotic 
Analysis

OTHER CASE
FUNCTION

WORST CASE
FUNCTION

BEST CASE
FUNCTION

Case AnalysisCODE

2

1

f(n) = 2

f(n) = 3n+1

O(1)

Θ(1)

Ω(1)
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When to do Case Analysis?
 Imagine a 3-dimensional plot
-Which case we’re considering is one dimension
-Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
-We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)
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Case Analysis
Modeling Recursive Code
Summations
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Recursive Patterns

Modeling and analyzing recursive code is all about finding 
patterns in how the input changes between calls and how 
much work is done within each call

Let’s explore some of the more common recursive patterns 

● Pattern #1: Halving the Input
● Pattern #2: Constant size input and doing work
● Pattern #3: Doubling the Input
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Binary Search

public int binarySearch(int[] arr, int toFind, int lo, int hi) {
    if( hi < lo ) {
        return -1;
    } if(hi == lo) {
        if(arr[hi] == toFind) {
            return hi;
        }
        return -1;
    }
    int mid = (lo+hi) / 2;
    if(arr[mid] == toFind) {
        return mid;
    } else if(arr[mid] < toFind) {
        return binarySearch(arr, toFind, mid+1, hi);
    } else {
        return binarySearch(arr, toFind, lo, mid-1);
    }
}
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Binary Search Runtime
binary search: Locates a target value in a sorted array or list by successively eliminating half 
of the array from consideration.
● Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

How many elements will be examined?

● What is the best case?

● What is the worst case?
element found at index 8, 1 item examined, O(1) 

element not found, ½ elements examined, then ½ of that… 

Pattern #1 – Halving the input

Take a guess! What is the tight 
Big-O of worst case binary search?

min midmin mid max
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Binary search runtime
For an array of size N, it eliminates ½ until 1 
element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

○ How many divisions does it take?

Think of it from the other direction:
○ How many times do I have to multiply by 2 to reach 

N?
1, 2, 4, 8, ..., N/4, N/2, N

○ Call this number of multiplications "x".

2x = N
x = log

2
 N

Binary search is in the logarithmic 
complexity class.
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TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-OH

Asymptotic 
Analysis

Moving Forward

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-OH

Asymptotic 
Analysis

WORST CASE
FUNCTION

BEST CASE
FUNCTION

Case AnalysisCODE

2

1

While this analysis is correct it relied on our 
ability to think through the pattern intuitively

This works for binary search, but most recursive 
code is too complex to rely on our intuition.

We need more powerful tools to form a proper 
code model.

O(1)

Θ(1)

Binary Search 
Code

Found in middle

not found

constant 

logarithmic

O(logn)

Θ(logn)

Ω(1)

Ω(logn)
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Model
 

How do you model 
recursive calls?

With a recursive 
math function!

+1
+1

+1
+2

+1

+1

+2
+2

+1
+2

} else

worst case
+6

worst case
+6 + recursion??
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Meet the Recurrence

A recurrence relation is an equation that defines a sequence based 
on a rule that gives the next term as a function of the previous 
term(s) 

It’s a lot like recursive code:
● At least one base case and at least one recursive case
● Each case should include the values for n to which it corresponds
● The recursive case should reduce the input size in a way that eventually triggers 

the base case
● The cases of your recurrence usually correspond exactly to the cases of the 

code
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Write a Recurrence

public int recursiveFunction(int n){

    if(n < 3) {

        return 3;

    }

    for(int int i=0; i < n; i++) {

        System.out.println(i);

    }

    int val1 = recursiveFunction(n/3);

    int val2 = recursiveFunction(n/3);

    return val1 * val2;

}

*n

+1

+1

+1

base case: +2

non-recursive work: n+2

+2

recursive work: 2T(n/3)
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Recurrence to Big-Θ

It’s still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

 

 

 

  

  

  

If

If

If

then

then

then

Master Theorem
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Understanding Master Theorem

The log of a < c case
○ Recursive case does a lot of non recursive work in 

comparison to how quickly it divides the input size
○ Most work happens in beginning of call stack
○ Non recursive work in recursive case dominates 

growth, nc term

The log of a = c
○ Recursive case evenly splits work between non 

recursive work and passing along inputs to subsequent 
recursive calls

○ Work is distributed across call stack

The log of a > c case
○ Recursive case breaks inputs apart quickly and doesn’t 

do much non recursive work
○ Most work happens near bottom of call stack

● A measures how many recursive calls are 
triggered by each method instance

● B measures the rate of change for input 
● C measures the dominating term of the non 

recursive work within the recursive method
● D measures the work done in the base case

 

 

  

  

  

If

If

If

then

then

then

Master Theorem
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Questions?
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Recursive Patterns

●Pattern #1: Halving the Input

●Pattern #2: Constant size input and doing work

●Pattern #3: Doubling the Input 

Binary Search Θ(logn)

Merge Sort
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Merge Sort
0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine
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Merge Sort

mergeSort(input) {
   if (input.length == 1)
      return
   else
      smallerHalf = mergeSort(new [0, ..., mid])
      largerHalf = mergeSort(new [mid + 1, ...])
      return merge(smallerHalf, largerHalf)
}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

1 if n<= 1
2T(n/2) + n otherwise

T(n) = 

Pattern #2 – Constant size input and doing work

Take a guess! What is the Big-O of 
worst case merge sort?
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Merge Sort Recurrence to Big-Θ

 

 

  

  

  

If

If

If

then

then

then

Master Theorem
 

 

1 if n<= 1
2T(n/2) + n otherwise

T(n) = 
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Questions?
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Recursive Patterns

●Pattern #1: Halving the Input

●Pattern #2: Constant size input and doing work

●Pattern #3: Doubling the Input 

Binary Search Θ(logn)

Merge Sort Θ(nlogn) 

Calculating Fibonacci
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Calculating Fibonacci
public int fib(int n) {

    if (n <= 1) {

        return 1;

    }

    return fib(n-1) + fib(n-1);

}

Almost

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

● Each call creates 2 more calls
● Each new call has a copy of the 

input, almost
● Almost doubling the input at 

each call

Pattern #3 – Doubling the Input
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Calculating Fibonacci Recurrence to Big-Θ
public int f(int n) {

    if (n <= 1) {

        return 1;

    }

    return f(n-1) + f(n-1);

}

d

2T(n-1) + c

 

 

Master Theorem

Can we use master theorem?

Uh oh, our model doesn’t match that format…

Maybe geometry can help!

Can we intuit a pattern? (“unrolling”)
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c

Looks like something’s happening but it’s tough
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Calculating Fibonacci Recurrence to Big-Θ

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

 

How many layers in the function call tree?

How many layers will it take to transform 
“n” to the base case of “1” by subtracting 1

For our example, 4 -> Height = n 

Layer Function calls

1 1

2 2

3 4

4 8

How many function calls on layer k?

2k-1

How many function calls TOTAL 
for a tree of k layers?

1 + 2 + 3 + 4 + … + 2k-1

How many function calls per layer?
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Calculating Fibonacci Recurrence to Big-Θ
Patterns found:

How many function calls on layer k? 2k-1

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + 8 + … + 2k-1

Total runtime = (total function calls) x (runtime of each function call) 

Total runtime = (1 + 2 + 4 + 8 + … + 2k-1) x (constant work) 

1 + 2 + 4 + 8 + … + 2k-1 = 
 

How many layers in the function call tree? n

 

Summation Identity
Finite Geometric Series
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Recursive Patterns

Pattern #3: Doubling the Input 
Calculating Fibonacci Θ(2n) 

Pattern #1: Halving the Input
Binary Search Θ(logn)

Pattern #2: Constant size input 
and doing work

Merge Sort Θ(nlogn)
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Questions?
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That’s all!



CSE 373 23SP  41

Appendix
Extra slides
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Code Analysis Process

code 
modeling

code

model of  
best-case 

runtime f(n)

Best-case upper bound O(n)

Best-case lower bound Ω(n)

Best-case tight fit Θ(n)

best case

worst case
model of  

worst-case 
runtime f(n)

Worst-case upper bound O(n)

Worst-case lower bound Ω(n)

Worst-case tight fit Θ(n)

case 
analysis

asymptotic 
analysis

Recurrence

Closed Form

Master Theorem

If code is recursive:

Tree Method
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Recurrence to Big Θ Techniques
A recurrence is a mathematical function that includes itself in its definition

This makes it very difficult to find the dominating term that will dictate the asymptotic growth

Solving the recurrence or “finding the closed form” is the process of eliminating the recursive 
definition. So far, we’ve seen three methods to do so:

1. Apply Master Theorem
○ Pro: Plug and chug convenience
○ Con: only works for recurrences of a certain format

2. Unrolling
○ Pro: Least complicated setup
○ Con: requires intuitive pattern matching

3. Tree Method
○ Pro: Plug and chug 
○ Con: Complex setup

T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c

f(
4)

f(
3)

f(
3)

f(
2)

f(
2)

f(
2)

f(
2)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

Master Theorem
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How much work is done at each layer?

●64 for this example -> n work at each layer

●Work is variable per layer, but across the 
entire layer work is constant - always n

How many layers are in our function call 
tree?

Hint: how many levels of recursive calls does 
it take binary search to get to the base case?

Height = log
2
n 

It takes log
2
n divisions by 2 for n to be 

reduced to the base case 1

log
2
64 = 6 -> 6 levels of this tree

f(n=64)
work = 64

f(n=32)
w=32

f(n=32)
w=32

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

1 if n<= 1
2T(n/2) + n otherwise

T(n) = 

… and so on…

Tree Method
Draw out call stack, what is the input to each call? How much work is done by each call?

Merge Sort
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Tree Method
 

 

… … … … … … … …… … …… … … … …

How many 
nodes at each 

level?

How much 
work across 
each level?

1 n

2

4

8

n

n

n

n

n

 
 

 
How much 

work done by 
each node?

n

 

 

 

 

 

    

        

             

Recursive level

0

1

2

3

logn
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Tree Method Practice
Level (i)

Number of 
Nodes

Work per 
Node

Work per 
Level

0 1 n n

1 2 n/2 n

2 4 n/4 n

3 8 n/8 n

log
2
n n 1

 

 

Combining it all together…

 

 
 

 

power of a log

 

 
 

 a

 

   

Summation of a constant 
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TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-OH

Tree Method

Recurrence to Big-Theta: Our Toolbox

 

MASTER THEOREM T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 
3c

PROS: Convenient to plug ‘n’ chug
CONS: Only works for certain 
format of recurrences

PROS: Least complicated setup
CONS: Requires intuitive 
pattern matching, no formal 
technique

PROS: Convenient to plug ‘n’ chug
CONS: Complicated to set up for a 
given recurrence

f(n=64)
work: 64

f(n=32)
work: 32

f(n=32)
work: 32

(followed by 
Asymptotic Analysis)

Master 
Theorem

2

Unrolling the
Recurrence

2 2
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Questions?
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Case Analysis
Modeling Recursive Code
Summations
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Modeling Complex Loops

for (int i = 0; i < n; i++) {
   for (int j = 0; j < i; j++) {
      System.out.println(“Hello!”);
   }
}

+1 nn

f(n) = n2

Keep an eye on loop 
bounds!

Write a mathematical model of the following code
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Modeling Complex Loops

for (int i = 0; i < n; i++) {
   for (int j = 0; j < i; j++) {
      System.out.print(“Hello! ”);
   }
    System.out.println();
}

+1
0 + 1 + 2 + 3 +…+ i-1 n

Summations!
1 + 2 + 3 + 4 +… + n =

 

                 = f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

 

T(n) =
 

T(n) =  (0 + 1 + 2 + 3 +…+ i-1)

How do we 
model this part?

What is the Big O?
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Simplifying Summations

 

  
 

Summation of a constant 
 

Factoring out a constant

 

Gauss’s Identity

 

 

for (int i = 0; i < n; i++) {
   for (int j = 0; j < i; j++) {
      System.out.println(“Hello!”);
   }
}

Find closed form using 
summation identities

(given on exams)

closed form
simplified 
tight big O

 

 

https://courses.cs.washington.edu/courses/cse373/19sp/resources/math/summation/

