
 1CSE 373 23SP

Lecture 6: Analyzing
Recursive Code

CSE 373: Data Structures and
Algorithms

1

CSE 373 23SP 2

Warm Up

All false!

Which of the following statements are FALSE?

Select all options that apply:
● A Big-Theta bound will exist for every function
● If a function is O(n²) it can’t also be Ω(n²)
● A piece of code whose model is f(n) = 3n + 6 has a simplified tight BigO of

O(n2)
● The tight upper and lower bound of piece of code’s runtime growth is

always the same complexity class

Slido Event #3504442
https://app.sli.do/event/7xn
q6sgX28GEKL7yH8PbAz

https://app.sli.do/event/7xnq6sgX28GEKL7yH8PbAz
https://app.sli.do/event/7xnq6sgX28GEKL7yH8PbAz

CSE 373 23SP 3

Announcements

● Project 1 is out
○ Due Wednesday April 12th

● Exercise 1 is out
○ Due Monday April 10th

CSE 373 23SP 4

Questions?

CSE 373 23SP 5

Case Analysis
Modeling Recursive Code
Summations

CSE 373 23SP 6

Review: Algorithmic Analysis Roadmap

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-O

Asymptotic
Analysis

RUNTIME
FUNCTION

Code
Modeling

CODE

1

2

CSE 373 23SP 7

Case Study: Linear Search

int linearSearch(int[] arr, int toFind) {
 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == toFind)

return i;
 }
 return -1;
}

2 3 9 4 5arr

toFind 2

2 3 9 4 5

toFind 8

i

arr

i

i i i i

CSE 373 SP 22 - CHAMPION

CSE 373 23SP 8

Best Case Worst Case
On Lucky Earth On Unlucky Earth (where it’s 2020 every year)

2 3 9 4 5arr

toFind 2

i

2 3 9 4 5arr

toFind 8

i

f(n) = 3n + 1f(n) = 2

O(1) Θ(1) O(n) Θ(n)
After asymptotic analysis:After asymptotic analysis:

CSE 373 23SP 9

Case Analysis

Case: a description of inputs/state for an algorithm that is specific enough to
build a code model (runtime function) whose only parameter is the input size
● Case Analysis is our tool for reasoning about all variation other than n!
● Occurs during the code 🡪 function step instead of function 🡪 O/Ω/Θ step!

● Best Case = fastest that our code could finish on
input of size n

● Worst Case = slowest that our code could finish on
input of size n.

● Importantly, any position of toFind in arr
could be its own case!
○ For this simple example, probably don’t care (they all

still have bound O(n))
○ But intermediate cases will be important later

Worst

Best

Other Cases

CSE 373 23SP 10

Caution: Common Misunderstanding

Best/Worst case is based on all variation other than value of n

Incorrect - based on specific values of n

● “The best case is when n=1, worst is when n=infinity”
● “The best case is when front is null”
● “The best case is when overallRoot is null”
● “The best case is when n is an even number”

Correct - based on state of data structure regardless of n

● “The best case is when the node I’m looking for is at front, the
worst is when it’s not in the list”

● “The best case is when the BST is perfectly balanced, the worst is
when it’s a single line of nodes”

CSE 373 23SP 11

Other cases
“Assume X won’t happen” case
● Assuming our array won’t need to resize is the most common example

“Average” case
● Assuming your input is random
● Need to specify what the possible inputs are and how likely they are
● f(n) is now the average number of steps on a random input of size n

“In-practice” case
● This isn’t a real term (I just made it up)
● Making some reasonable assumptions about how the real-world is probably going to work
● We’ll tell you the assumptions and won’t ask you to come up with these assumptions on your

own
● Then do worst-case analysis under those assumptions

All of these can be combined with any of O, Ω, and θ

CSE 373 23SP 12

How to do case analysis

1. Look at the code, understand how thing could change
depending on the state of input
● How can you exit loops early?
● Can you return (exit the method) early?
● Are some if/else branches much slower than others?

2. Figure out what input values can cause you to hit the
(best/worst) parts of the code.
● not to be confused with number of inputs

3. Now do the analysis like normal!

CSE 373 23SP 13

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-O

Asymptotic
Analysis

OTHER CASE
FUNCTION

WORST CASE
FUNCTION

BEST CASE
FUNCTION

Case AnalysisCODE

2

Algorithmic Analysis Roadmap

for (i = 0; i < n; i++) {
 if (arr[i] == toFind) {
 return i;
 }
}
return -1;

f(n) = 2 O(n)

Θ(n)f(n) = 3n+1

Ω(n)

1

CSE 373 23SP 14

Review Algorithmic Analysis Roadmap

for (i = 0; i < n; i++) {
 if (arr[i] == toFind) {
 return i;
 }
}
return -1;

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-O

Asymptotic
Analysis

OTHER CASE
FUNCTION

WORST CASE
FUNCTION

BEST CASE
FUNCTION

Case AnalysisCODE

2

1

f(n) = 2

f(n) = 3n+1

O(1)

Θ(1)

Ω(1)

CSE 373 23SP 15

When to do Case Analysis?
 Imagine a 3-dimensional plot
-Which case we’re considering is one dimension
-Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
-We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)

CSE 373 23SP 16

Case Analysis
Modeling Recursive Code
Summations

CSE 373 23SP 17

Recursive Patterns

Modeling and analyzing recursive code is all about finding
patterns in how the input changes between calls and how
much work is done within each call

Let’s explore some of the more common recursive patterns

● Pattern #1: Halving the Input
● Pattern #2: Constant size input and doing work
● Pattern #3: Doubling the Input

CSE 373 23SP 18

Binary Search

public int binarySearch(int[] arr, int toFind, int lo, int hi) {
 if(hi < lo) {
 return -1;
 } if(hi == lo) {
 if(arr[hi] == toFind) {
 return hi;
 }
 return -1;
 }
 int mid = (lo+hi) / 2;
 if(arr[mid] == toFind) {
 return mid;
 } else if(arr[mid] < toFind) {
 return binarySearch(arr, toFind, mid+1, hi);
 } else {
 return binarySearch(arr, toFind, lo, mid-1);
 }
}

CSE 373 23SP 19

Binary Search Runtime
binary search: Locates a target value in a sorted array or list by successively eliminating half
of the array from consideration.
● Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

How many elements will be examined?

● What is the best case?

● What is the worst case?
element found at index 8, 1 item examined, O(1)

element not found, ½ elements examined, then ½ of that…

Pattern #1 – Halving the input

Take a guess! What is the tight
Big-O of worst case binary search?

min midmin mid max

CSE 373 23SP 20

Binary search runtime
For an array of size N, it eliminates ½ until 1
element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

○ How many divisions does it take?

Think of it from the other direction:
○ How many times do I have to multiply by 2 to reach

N?
1, 2, 4, 8, ..., N/4, N/2, N

○ Call this number of multiplications "x".

2x = N
x = log

2
 N

Binary search is in the logarithmic
complexity class.

CSE 373 23SP 21

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-OH

Asymptotic
Analysis

Moving Forward

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-OH

Asymptotic
Analysis

WORST CASE
FUNCTION

BEST CASE
FUNCTION

Case AnalysisCODE

2

1

While this analysis is correct it relied on our
ability to think through the pattern intuitively

This works for binary search, but most recursive
code is too complex to rely on our intuition.

We need more powerful tools to form a proper
code model.

O(1)

Θ(1)

Binary Search
Code

Found in middle

not found

constant

logarithmic

O(logn)

Θ(logn)

Ω(1)

Ω(logn)

CSE 373 23SP 22

Model

How do you model
recursive calls?

With a recursive
math function!

+1
+1

+1
+2

+1

+1

+2
+2

+1
+2

} else

worst case
+6

worst case
+6 + recursion??

CSE 373 23SP 23

Meet the Recurrence

A recurrence relation is an equation that defines a sequence based
on a rule that gives the next term as a function of the previous
term(s)

It’s a lot like recursive code:
● At least one base case and at least one recursive case
● Each case should include the values for n to which it corresponds
● The recursive case should reduce the input size in a way that eventually triggers

the base case
● The cases of your recurrence usually correspond exactly to the cases of the

code

CSE 373 23SP 24

Write a Recurrence

public int recursiveFunction(int n){

 if(n < 3) {

 return 3;

 }

 for(int int i=0; i < n; i++) {

 System.out.println(i);

 }

 int val1 = recursiveFunction(n/3);

 int val2 = recursiveFunction(n/3);

 return val1 * val2;

}

*n

+1

+1

+1

base case: +2

non-recursive work: n+2

+2

recursive work: 2T(n/3)

CSE 373 23SP 25

Recurrence to Big-Θ

It’s still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

If

If

If

then

then

then

Master Theorem

CSE 373 23SP 26

Understanding Master Theorem

The log of a < c case
○ Recursive case does a lot of non recursive work in

comparison to how quickly it divides the input size
○ Most work happens in beginning of call stack
○ Non recursive work in recursive case dominates

growth, nc term

The log of a = c
○ Recursive case evenly splits work between non

recursive work and passing along inputs to subsequent
recursive calls

○ Work is distributed across call stack

The log of a > c case
○ Recursive case breaks inputs apart quickly and doesn’t

do much non recursive work
○ Most work happens near bottom of call stack

● A measures how many recursive calls are
triggered by each method instance

● B measures the rate of change for input
● C measures the dominating term of the non

recursive work within the recursive method
● D measures the work done in the base case

If

If

If

then

then

then

Master Theorem

CSE 373 23SP 27

Questions?

CSE 373 23SP 28

Recursive Patterns

●Pattern #1: Halving the Input

●Pattern #2: Constant size input and doing work

●Pattern #3: Doubling the Input

Binary Search Θ(logn)

Merge Sort

CSE 373 23SP 29

Merge Sort
0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

CSE 373 23SP 30

Merge Sort

mergeSort(input) {
 if (input.length == 1)
 return
 else
 smallerHalf = mergeSort(new [0, ..., mid])
 largerHalf = mergeSort(new [mid + 1, ...])
 return merge(smallerHalf, largerHalf)
}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

Pattern #2 – Constant size input and doing work

Take a guess! What is the Big-O of
worst case merge sort?

CSE 373 23SP 31

Merge Sort Recurrence to Big-Θ

If

If

If

then

then

then

Master Theorem

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

CSE 373 23SP 32

Questions?

CSE 373 23SP 33

Recursive Patterns

●Pattern #1: Halving the Input

●Pattern #2: Constant size input and doing work

●Pattern #3: Doubling the Input

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci

CSE 373 23SP 34

Calculating Fibonacci
public int fib(int n) {

 if (n <= 1) {

 return 1;

 }

 return fib(n-1) + fib(n-1);

}

Almost

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

● Each call creates 2 more calls
● Each new call has a copy of the

input, almost
● Almost doubling the input at

each call

Pattern #3 – Doubling the Input

CSE 373 23SP 35

Calculating Fibonacci Recurrence to Big-Θ
public int f(int n) {

 if (n <= 1) {

 return 1;

 }

 return f(n-1) + f(n-1);

}

d

2T(n-1) + c

Master Theorem

Can we use master theorem?

Uh oh, our model doesn’t match that format…

Maybe geometry can help!

Can we intuit a pattern? (“unrolling”)
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c

Looks like something’s happening but it’s tough

CSE 373 23SP 36

Calculating Fibonacci Recurrence to Big-Θ

f(4)

f(3) f(3)

f(2) f(2) f(2) f(2)

f(1) f(1)f(1) f(1)f(1) f(1)f(1) f(1)

How many layers in the function call tree?

How many layers will it take to transform
“n” to the base case of “1” by subtracting 1

For our example, 4 -> Height = n

Layer Function calls

1 1

2 2

3 4

4 8

How many function calls on layer k?

2k-1

How many function calls TOTAL
for a tree of k layers?

1 + 2 + 3 + 4 + … + 2k-1

How many function calls per layer?

CSE 373 23SP 37

Calculating Fibonacci Recurrence to Big-Θ
Patterns found:

How many function calls on layer k? 2k-1

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + 8 + … + 2k-1

Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1 + 2 + 4 + 8 + … + 2k-1) x (constant work)

1 + 2 + 4 + 8 + … + 2k-1 =

How many layers in the function call tree? n

Summation Identity
Finite Geometric Series

CSE 373 23SP 38

Recursive Patterns

Pattern #3: Doubling the Input
Calculating Fibonacci Θ(2n)

Pattern #1: Halving the Input
Binary Search Θ(logn)

Pattern #2: Constant size input
and doing work

Merge Sort Θ(nlogn)

CSE 373 23SP 39

Questions?

CSE 373 23SP 40

That’s all!

CSE 373 23SP 41

Appendix
Extra slides

CSE 373 23SP 42

Code Analysis Process

code
modeling

code

model of
best-case

runtime f(n)

Best-case upper bound O(n)

Best-case lower bound Ω(n)

Best-case tight fit Θ(n)

best case

worst case
model of

worst-case
runtime f(n)

Worst-case upper bound O(n)

Worst-case lower bound Ω(n)

Worst-case tight fit Θ(n)

case
analysis

asymptotic
analysis

Recurrence

Closed Form

Master Theorem

If code is recursive:

Tree Method

CSE 373 23SP 43

Recurrence to Big Θ Techniques
A recurrence is a mathematical function that includes itself in its definition

This makes it very difficult to find the dominating term that will dictate the asymptotic growth

Solving the recurrence or “finding the closed form” is the process of eliminating the recursive
definition. So far, we’ve seen three methods to do so:

1. Apply Master Theorem
○ Pro: Plug and chug convenience
○ Con: only works for recurrences of a certain format

2. Unrolling
○ Pro: Least complicated setup
○ Con: requires intuitive pattern matching

3. Tree Method
○ Pro: Plug and chug
○ Con: Complex setup

T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c

f(
4)

f(
3)

f(
3)

f(
2)

f(
2)

f(
2)

f(
2)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

f(
1)

Master Theorem

CSE 373 23SP 44

How much work is done at each layer?

●64 for this example -> n work at each layer

●Work is variable per layer, but across the
entire layer work is constant - always n

How many layers are in our function call
tree?

Hint: how many levels of recursive calls does
it take binary search to get to the base case?

Height = log
2
n

It takes log
2
n divisions by 2 for n to be

reduced to the base case 1

log
2
64 = 6 -> 6 levels of this tree

f(n=64)
work = 64

f(n=32)
w=32

f(n=32)
w=32

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=16)
w=16

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

f(n=8)
w=8

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

… and so on…

Tree Method
Draw out call stack, what is the input to each call? How much work is done by each call?

Merge Sort

CSE 373 23SP 45

Tree Method

… … … … … … … …… … …… … … … …

How many
nodes at each

level?

How much
work across
each level?

1 n

2

4

8

n

n

n

n

n

How much

work done by
each node?

n

Recursive level

0

1

2

3

logn

CSE 373 23SP 46

Tree Method Practice
Level (i)

Number of
Nodes

Work per
Node

Work per
Level

0 1 n n

1 2 n/2 n

2 4 n/4 n

3 8 n/8 n

log
2
n n 1

Combining it all together…

power of a log

 a

Summation of a constant

CSE 373 23SP 47

TIGHT
BIG-OMEGA

BIG-THETA

TIGHT
BIG-OH

Tree Method

Recurrence to Big-Theta: Our Toolbox

MASTER THEOREM T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d +
3c

PROS: Convenient to plug ‘n’ chug
CONS: Only works for certain
format of recurrences

PROS: Least complicated setup
CONS: Requires intuitive
pattern matching, no formal
technique

PROS: Convenient to plug ‘n’ chug
CONS: Complicated to set up for a
given recurrence

f(n=64)
work: 64

f(n=32)
work: 32

f(n=32)
work: 32

(followed by
Asymptotic Analysis)

Master
Theorem

2

Unrolling the
Recurrence

2 2

CSE 373 23SP 48

Questions?

CSE 373 23SP 49

Case Analysis
Modeling Recursive Code
Summations

CSE 373 23SP 50

Modeling Complex Loops

for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++) {
 System.out.println(“Hello!”);
 }
}

+1 nn

f(n) = n2

Keep an eye on loop
bounds!

Write a mathematical model of the following code

CSE 373 23SP 51

Modeling Complex Loops

for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++) {
 System.out.print(“Hello! ”);
 }
 System.out.println();
}

+1
0 + 1 + 2 + 3 +…+ i-1 n

Summations!
1 + 2 + 3 + 4 +… + n =

 = f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

T(n) =

T(n) = (0 + 1 + 2 + 3 +…+ i-1)

How do we
model this part?

What is the Big O?

CSE 373 23SP 52

Simplifying Summations

Summation of a constant

Factoring out a constant

Gauss’s Identity

for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++) {
 System.out.println(“Hello!”);
 }
}

Find closed form using
summation identities

(given on exams)

closed form
simplified
tight big O

https://courses.cs.washington.edu/courses/cse373/19sp/resources/math/summation/

