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Warm Up

public void mystery2(ArrayList<String> list) {

   for (int i = 0; i < list.size(); i++) {

      for (int j = 0; j < list.size(); j++) {

         System.out.println(list.get(0));

      }

   }

}

Construct a mathematical function modeling the runtime for 
the following functions

Approach
-> start with basic operations, work inside out for control 
structures
- Each basic operation = +1
- Conditionals = test operations + appropriate branch
- Loop = iterations * loop body

*n+2 *n f(n) = 2n2

Slido Event #3113134
https://app.sli.do/event/eZS
ybDnHLRnuNXw3WN2zGj 

https://app.sli.do/event/eZSybDnHLRnuNXw3WN2zGj
https://app.sli.do/event/eZSybDnHLRnuNXw3WN2zGj
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Announcements

● Project 0 – 143 Review Project Due Tonight 11:59pm PST

● Project 1 - Deques releases tonight
○ Due Wednesday April 12th

● Exercise 0 out - Due Monday 4/10
○ Individual submissions
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P1 Deques
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P1: Deques

● Deque ADT: a double-ended queue
○ Add/remove from both ends, get in middle

● This project builds on ADTs vs. Data 
Structure Implementations, Queues, and 
a little bit of Asymptotic Analysis
○ Practice the techniques and analysis covered in 

LEC 02 & LEC 03!

● 3 components:
○ Debug ArrayDeque implementation
○ Implement LinkedDeque
○ Run experiments

ArrayDeque
LinkedDeque

DEQUEUE ADT

State

Collection of ordered items
Count of items

Behavior
addFirst(item) add to front
addLast(item) add to end
removeFirst() remove from front
removeLast() remove from end
size() count of items
isEmpty() count is 0?
get(index) get 0-indexed 
element
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P1: Sentinel Nodes

Reduce code complexity & bugs

Tradeoff: a tiny amount of extra 
storage space for more reliable, 
easier-to-develop code

Tired of running into these?
Find yourself writing case after case 
in your linked node code?

Client View:

Implementation:

[3, 9]Introducing

Sentinel Nodes
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P1: Gradescope & Testing
● From this project onward, we’ll have some Gradescope-only tests

○ Run & give feedback when you submit, but only give a general name

● The practice of reasoning about your code and writing your own tests is 
crucial
○ Use Gradescope tests as a double-check that your tests are thorough
○ To debug Gradescope failures, your first step should be writing your own test case

● You can submit as many times as you want on Gradescope (we’ll only 
grade the last active submission)
○ If you’re submitting a lot (more than ~6 times/hr) it will ask you to wait a bit
○ Intention is not to get in your way: to give server a break, and guess/check is not usually an 

effective way to learn the concepts in these assignments

1. Write 
Implementation

2. Think about edge 
cases, Write your own 

tests
3. Run your own tests

4. Run Gradescope 
tests as a 

double-check
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P1: Working with a Partner

● P1 Instructions talk about collaborating with your partner
○ Adding each other to your GitLab repos

● Recommendations for partner work:
○ Pair programming! Talk through and write the code together

■ Two heads are better than one, especially when spotting edge cases ☺
○ Meet in real-time! Consider screen-sharing via Zoom
○ Be kind! Collaborating in our online quarter can be especially difficult, so 

please be patient and understanding – partner projects are usually an 
awesome experience if we’re all respectful

● We expect you to understand the full projects, not just half
○ Please don’t just split the projects in half and only do part
○ Please don’t come to OH and say “my partner wrote this code, I don’t 

understand it, can you help me debug it?”
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Questions?
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Big O
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Definition: Big-O
 

 

We wanted to find an upper bound on our 
algorithm’s running time, but:
● We don’t want to care about constant factors
● We only care about what happens as n gets 

larger

We also say that g(n) “dominates” f(n)

Big-O

f(n) is O(g(n)) if there exist positive 
constants c, n₀, such that for all n ≥ n₀, 

f(n) ≤ c · g(n)
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Applying Big O Definition

   Show that is

Apply definition term by term

 

 

Add up all your truths

 

 

Big-O

f(n) is O(g(n)) if there exist 
positive constants c, n₀, such that 

for all n ≥ n₀, f(n) ≤ c · g(n)
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Exercise: Proving Big O

  

Big-O

f(n) is O(g(n)) if there exist 
positive constants c, n₀, such that 

for all n ≥ n₀, f(n) ≤ c · g(n)
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Writing Big-O Proofs
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Big-O as an upper bound

  

 

 

 

Big-O is just an upper bound. It doesn’t have to be a good upper bound

If we want the best upper bound, we’ll ask you for a simplified, tight big-O bound. 
O(n²) is the tight bound for this example.

It is (almost always) technically correct to say your code runs in time O(n!).
DO NOT TRY TO PULL THIS TRICK IN AN INTERVIEW (or exam)!
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Big-O is an upper-bound, not a fit
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If we want the most-informative upper bound, we’ll 
ask you for a simplified, tight big-O bound.

O(n^2 ) is the tight bound for the function f(n) = 
10n2+15n.  See the graph below – the tight big-O 
bound is the smallest upper bound within the 
definition of big-O.

If you zoom out a bunch, the your tight bound and 
your function will be overlapping compared to 
other complexity classes.

Big-O is an upper-bound, not a fit

What do we want to look for on a plot to 
determine if one function is in the big-O of 
the other?

You can sanity check that your g(n) function 
(the dominating one) overtakes or is equal to 
your f(n) function after some point and 
continues that greater-than-or-equal-to 
trend towards infinity

 

 

n3

n5

n4

10n2 + 15n

 

 

n2

10n2 + 15n
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Questions?
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Uncharted Waters: a different type of code model

boolean isPrime(int n){
int toTest = 2;
while(toTest < Math.sqrt(n)){

    if(n % toTest == 0) {
        return false;
    } else {
        toTest++;
    }

}
return true;

}

Find a model f(n) for the running time of this code on input n. What’s the Big-O?

*n

+1

+2

+1

+1

+2

+2

+4 … sometimes?

^ we always pick the larger number to represent the 
slowest possible interpretation for Big O analysis

so even with the “sometimes n” loop we pick n to get a 
code model of:

f(n) = 6n+2
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Prime Checking Runtime
 

This is why we we define Big-O as the upper bound!

 

Is the running time of the 
code O(1) or O(n)?

More than half of the 
time we need 3 or fewer 
iterations. Is it O(1)?

But there’s still always 
another number where 
the conde takes n 
iterations. So O(n)?
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  Big-O

f(n) is O(g(n)) if there exist 
positive constants c, n₀, such that 

for all n ≥ n₀, f(n) ≤ c · g(n)

Is the running time O(n)?
Can you find constants c and n₀?

Is the running time O(1)?
Can you find constants c and n₀?

How about c = 1 and n₀ = 5,
f(n) = smallest divisor of n ≤ 1·n for n ≥ 5  

No! Choose your value of c. I can find a prime 
number k bigger than c.
And f(k) = k ﹥ c · 1 so the definition isn’t met

It’s O(n) but not O(1) 
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Big-O isn’t everything

  

 

   

 Our prime finding code is O(n). But so is, for example, printing all the elements of a list.

Your experience running these two pieces of code is going to be very different.
It’s disappointing that the O() are the same – that’s not very precise.
Could we have some way of pointing out the list code always takes AT LEAST n operations?
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  The formal definition of Big-Omega is 
the flipped version of Big-Oh.

When we make Big-Oh statements 
about a function and say f(n) is O(g(n)) 
we’re saying that f(n) grows at most as 
fast as g(n).

But with Big-Omega statements like f(n) 
is Ω(g(n)), we’re saying that f(n) will 
grows at least as fast as g(n).

Visually: what is the lower limit of this function? 
What is bounded on the bottom by?

Big-Omega

f(n) is Ω(g(n)) if there exist 
positive constants c, n₀, such that 

for all n ≥ n₀, f(n) ≥  c · g(n)
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Big-Omega definition Plots

  
 

 

2n3

n2

n

1

n3
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Note: this right graph’s tight O bound is O(n) and its tight Omega bound is Omega(n).  This is what most 
of the functions we’ll deal with will look like, but there exists some code that would produce runtime 
functions like on the left.

f(n) = nprime runtime function
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Big-Theta

Big Theta is “equal to”
● My code takes “exactly”* this long to run

*Except for constant factors and lower order terms

     

f(n) = n

To define a big-Theta, you expect 
the tight big-Oh and tight 
big-Omega bounds to be touching 
on the graph (meaning they’re the 
same complexity class)

Big-Theta

f(n) is Θ(g(n)) if 
f(n) is O(g(n)) and f(n) is Ω(g(n)).
In other words, there exist positive 
constants c1, c2, n₀ such that for all n ≥ n₀
c₁ · g(n) ≤  f(n) ≤ c₂ · g(n)
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Big-Theta

If the upper bound (BigO) and lower bound (Big Omega) are in 
different complexity classes, there is no fit so…

     

prime runtime function

 
theta
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O, and Omega, and Theta [oh my?]

Big-O is an upper bound 
● My code takes at most this long to run

Big-Theta

f(n) is Θ(g(n)) if 
f(n) is O(g(n)) and f(n) is Ω(g(n)).
In other words, there exist positive constants c1, 
c2, n₀ such that for all n ≥ n₀
c₁ · g(n) ≤  f(n) ≤ c₂ · g(n)

Big-Omega

f(n) is Ω(g(n)) if there exist positive constants c, 
n₀, such that for all n ≥ n₀, f(n) ≥  c · g(n)

Big-O

f(n) is O(g(n)) if there exist positive constants c, 
n₀, such that for all n ≥ n₀, f(n) ≤ c · g(n)

Big-Omega is a lower bound
● My code takes at least this long to 

run

Big Theta is “equal to”
● My code takes “exactly”* this long to run
● *Except for constant factors and lower order 

terms
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Examples

 4n2 ∈ Ω(1)
 true
 4n2 ∈ Ω(n) 
 true
 4n2 ∈ Ω(n2) 
 true
 4n2 ∈ Ω(n3) 
 false
 4n2 ∈ Ω(n4) 
 false

 4n2 ∈ O(1) 

 false

 4n2 ∈ O(n) 

 false

 4n2 ∈ O(n2) 

 true

 4n2 ∈ O(n3) 

 true

 4n2 ∈ O(n4) 

 true

Big-Theta

f(n) is Θ(g(n)) if 
f(n) is O(g(n)) and f(n) is Ω(g(n)).
In other words, there exist positive constants c1, 
c2, n₀ such that for all n ≥ n₀
c₁ · g(n) ≤  f(n) ≤ c₂ · g(n)

Big-Omega

f(n) is Ω(g(n)) if there exist positive constants c, 
n₀, such that for all n ≥ n₀, f(n) ≥  c · g(n)

Big-O

f(n) is O(g(n)) if there exist positive constants c, 
n₀, such that for all n ≥ n₀, f(n) ≤ c · g(n)
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Simplified, tight big-O
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Questions?
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Our Upgraded Tool: Asymptotic Analysis

TIGHT

BIG-O

RUNTIME

FUNCTION
Asymptotic
Analysis

2 O(n2)

TIGHT

BIG-OMEGA

BIG-THETA Θ(n2)

f(n) = 10n2 + 13n + 2

We’ve upgraded our Asymptotic Analysis tool to convey more useful information! Having 3 different types of bounds 
means we can still characterize the function in simple terms, but describe it more thoroughly than just Big-Oh.

CSE 373 SP 22 - CHAMPION

Ω(n2)
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Our Upgraded Tool: Asymptotic Analysis
TIGHT

BIG-OH

RUNTIME

FUNCTION
Asymptotic
Analysis

2 O(n)

 

TIGHT

BIG-OMEGA

BIG-THETA
Does not exist 
for this function

isPrime()
Big-Theta doesn’t always exist for every function! But the information that 
Big-Theta doesn’t exist can itself be a useful characterization of the function. 

CSE 373 SP 22 - CHAMPION

Ω(1)
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Algorithmic Analysis Roadmap

CODE Code Modeling
RUNTIME

FUNCTION

1

for (i = 0; i < n; i++) {
  a[i] = 1;
  b[i] = 2;
}

f(n) = 2n

TIGHT

BIG-OH

Asymptotic
Analysis

2

TIGHT

BIG-OMEGA

BIG-THETA

O(n)

Θ(n)

We just finished building this tool to 
characterize a function in terms of some 
useful bounds!

Now, let’s look at this tool in more 
depth. How exactly are we coming 
up with that function?

CSE 373 SP 22 - CHAMPION

Ω(n)
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Case Analysis

CSE 373 SP 18 - KASEY CHAMPION 35
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Case Study: Linear Search

int linearSearch(int[] arr, int toFind) {
   for (int i = 0; i < arr.length; i++) {
   if (arr[i] == toFind)

return i;
   }
   return -1;
}

2 3 9 4 5arr

toFind 2

2 3 9 4 5

toFind 8

i

 

arr

i

i i i i

CSE 373 SP 22 - CHAMPION
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Best Case Worst Case
On Lucky Earth On Unlucky Earth (where it’s 2020 every year)

2 3 9 4 5arr

toFind 2

i

2 3 9 4 5arr

toFind 8

i

f(n) = 3n + 1f(n) = 2

O(1)  Θ(1) O(n)  Θ(n)
After asymptotic analysis:After asymptotic analysis:
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Case Analysis

Case: a description of inputs/state for an algorithm that is specific 
enough to build a code model (runtime function) whose only 
parameter is the input size
● Case Analysis is our tool for reasoning about all variation other than n!
● Occurs during the code 🡪 function step instead of function 🡪 O/Ω/Θ step!

● (Best Case: fastest/Worst Case: slowest) that 
our code could finish on input of size n.

● Importantly, any position of toFind in arr could 
be its own case!
○ For this simple example, probably don’t care 

(they all still have bound O(n))
○ But intermediate cases will be important later

Worst

Best

Other Cases

CSE 373 SP 22 - CHAMPION
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Caution: Common Misunderstanding

Best/Worst case is based on all variation other than value of n

“The best case is when n=1, worst is when n=infinity” 

“The best case is when front is null”

“The best case is when overallRoot is null”

Correct

“The best case is when the node I’m looking for is at front, the 
worst is when it’s not in the list”

“The best case is when the BST is perfectly balanced, the worst 
is when it’s a single line of nodes”

Incorrect
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Other cases

  

CSE 373 19 SU - ROBBIE WEBER
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How to do case analysis

1. Look at the code, understand how thing could change 
depending on the input.

● How can you exit loops early? 
● Can you return (exit the method) early?
● Are some if/else branches much slower than others?

2. Figure out what input values can cause you to hit the 
(best/worst) parts of the code.

- not to be confused with number of inputs

3. Now do the analysis like normal!

CSE 373 19 SU - ROBBIE WEBER
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Algorithmic Analysis Roadmap

CODE

BEST CASE

FUNCTION

for (i = 0; i < n; i++) {
  if (arr[i] == toFind) {
    return i;
  }
}
return -1;

f(n) = 2

TIGHT

BIG-OH2

TIGHT

BIG-OMEGA

BIG-THETA

O(n)

Θ(n)

1

Asymptotic
Analysis

WORST CASE

FUNCTION

OTHER CASE

FUNCTION

Case 
Analysis

f(n) = 3n+1

Ω(n)



CSE 373 23SP  43

Review  Algorithmic Analysis Roadmap

CODE

BEST CASE

FUNCTION

for (i = 0; i < n; i++) {
  if (arr[i] == toFind) {
    return i;
  }
}
return -1;

f(n) = 2

TIGHT

BIG-OH2

TIGHT

BIG-OMEGA

BIG-THETA

O(1)

 

Θ(1)
1 Asymptotic

Analysis

WORST CASE

FUNCTION

OTHER CASE

FUNCTION

Case 
Analysis

f(n) = 3n+1

Ω(1)
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When to do Case Analysis?
 Imagine a 3-dimensional plot
-Which case we’re considering is one dimension
-Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
-We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)


