## Section 02: Asymptotic Analysis

## Section Problems

## 1. Comparing growth rates

(a) Simplify each of the following functions to a tight big- $\mathcal{O}$ bound in terms of $n$. Then order them from fastest to slowest in terms of asymptotic growth. (By "fastest", we mean which function increases the most rapidly as $n$ increases.)

- $\log _{4}(n)+\log _{2}(n)$
- $\frac{n}{2}+4$
- $2^{n}+3$
- 750,000,000
- $8 n+4 n^{2}$
(b) Order each of these more esoteric functions from fastest to slowest in terms of asymptotic growth. (By "fastest", we mean which function increases the most rapidly as $n$ increases.) Also state a simplified tight $\mathcal{O}$ bound for each.
- $2^{n / 2}$
- $3^{n}$
- $2^{n}$


## 2. True or false?

(a) In the worst case, finding an element in a sorted array using binary search is $\mathcal{O}(n)$.
(b) In the worst case, finding an element in a sorted array using binary search is $\Omega(n)$.
(c) If a function is in $\Omega(n)$, then it could also be in $\mathcal{O}\left(n^{2}\right)$.
(d) If a function is in $\Theta(n)$, then it could also be in $\mathcal{O}\left(n^{2}\right)$.
(e) If a function is in $\Omega(n)$, then it is always in $\mathcal{O}(n)$.

## 3. Code to summation

For each of the following code blocks, give a summation that represents the worst-case runtime in terms of $n$.

```
int x = 0;
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        x++;
    }
}
```

(b)

```
int x = 0;
for (int i = n; i >= 1; i /= 2) {
    x += i;
}
```


## 4. Code modeling

For each of the following code blocks, construct a mathematical function modeling the worst-case runtime of the code in terms of $n$. Then, give a tight big- $\mathcal{O}$ bound of your model.
(a) int $x=0$

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n * n / 3; j++) {
        x += j;
    }
}
```

(b) int $x=0$;
for (int $\mathrm{i}=\mathrm{n}$; $\mathrm{i}>=0$; $\mathrm{i}-=1$ ) \{
if (i \% 3 == 0) \{
break;
\} else \{
x += n;
\}
\}
(c) int $x=0$;
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$ ) \{
if (i \% $5==0$ ) \{
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; $\mathrm{j}++$ ) \{
if (i == j) \{
x += i * j;
\}
\}
\}
\}
(d) int $x=0$;
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n}$; $\mathrm{i}++$ ) \{
if ( $\mathrm{n}<100000$ ) \{
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$ ) \{
x += 1;
\}
\} else \{
$x+=1$;
\}
\}
(e) int $x=0$;

```
if (n % 2 == 0) {
    for (int i = 0; i < n * n * n * n; i++) {
        x++;
    }
} else {
    for (int i = 0; i < n * n * n; i++) {
        x++;
    }
}
```


## 5. Applying definitions

For each of the following, choose a $c$ and $n_{0}$ which show $f(n) \in \mathcal{O}(g(n))$. Explain why your values of $c$ and $n_{0}$ work.
(a) $f(n)=3 n+4, g(n)=5 n^{2}$
(b) $f(n)=33 n^{3}+\sqrt{n}-6, g(n)=17 n^{4}$
(c) $f(n)=17 \log (n), g(n)=32 n+2 n \log (n)$

## 6. Using our definitions

Most of the time in the real world, we don't write formal big- $\mathcal{O}$ proofs. The point of having these definitions is not to use them every single time we think about big- $\mathcal{O}$. Instead, we use the formal definitions when a question is particularly tricky, or we want to make a very general statement.
Here are some particularly tricky or general statements that are easier to justify with the formal definitions than with just your intuition.
(a) We almost never say a function is $\mathcal{O}(5 n)$, we always say it is $\mathcal{O}(n)$ instead. Show that this transformation is ok, i.e. that if $f(n)$ is $\mathcal{O}(5 n)$ then it is $\mathcal{O}(n)$ as well.
(b) When we decide on the big-O running time of a function, we like to say that whatever happens on small $n$ doesn't matter. Let's see why with an actual proof. You write two functions to solve the same problem: method1 and method2. method1 takes $\mathcal{O}\left(n^{2}\right)$ time and method2 takes $\mathcal{O}(n)$ time. What is the big- $\mathcal{O}$ running time of the following function:

```
public void combined(n){
    if(n < 10000)
    method1(n);
    else
    method2(n);
}
```


## 7. Memory analysis

For each of the following functions, construct a mathematical function modeling the amount of memory used by the algorithm in terms of $n$. Then, give a tight big- $\mathcal{O}$ bound of your model.
(a) List<Integer> list $=$ new LinkedList<Integer>();
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n} * \mathrm{n}$; $\mathrm{i}++$ ) \{
list.insert(i);
\}
Iterator<Integer> it = list.iterator();
while (it.hasNext()) \{
System.out.println(it.next());
\}
(b) int[] arr $=\{0,0,0\}$;

```
for (int i = 0; i < n; i++) {
```

    arr[0]++;
    \}
(c) ArrayDictionary<Integer, String> dict = new ArrayDictionary<>();
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$ ) \{
String curr $=" "$;
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$ ) \{
for (int $k=0 ; k<j ; k++$ ) \{
curr += "?";
\}
\}
dict.put(i, curr);
\}

Note 1: For simplicity, assume the dictionary has an internal capacity of exactly $n$.
Note 2: The amount of memory used by a single character ( $c$ ) and the amount of memory used by a single int ( $x$ ) are both constant.

Note 3: An ArrayDictionary stores its key-value pairs contiguously, and performs scans through (potentially) the entire data structure when performing an insert() or a find().

