
 1CSE 373 23SP

Lecture 26: Memory and
Locality

CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Announcements

● In-person Final Scores released
● Final Resubmission open- will close Wednesday June 7th at 11:59PM

○ NO LATE SUBMISSIONS
● EX7 deadline was inconsistent across the platforms, so it is now officially

due tonight
○ Grades will be released this weekend
○ Re-grades will open this weekend and close Wednesday June 7th

Slido Event #3731178
https://app.sli.do/event/8QN
yh3w8FPmi6b9qRf8vxS

https://app.sli.do/event/8QNyh3w8FPmi6b9qRf8vxS
https://app.sli.do/event/8QNyh3w8FPmi6b9qRf8vxS

CSE 373 23SP 3

Memory and Locality
Memory Usage and Movement

CSE 373 23SP 4

Review: Binary, Bits and Bytes
binary

A base-2 system of representing numbers using only 1s and 0s

- vs decimal, base 10, which has 9 symbols

bit

The smallest unit of computer memory represented as a single binary value either 0 or 1

Decimal Decimal Break Down Binary Binary Break Down

0 (0 * 100) 0 (0 * 20)

1 (1 * 100) 1 (1 * 20)

10 (1 * 101) + (0 * 100) 1010 (1 * 23) + (0 * 22) + (1 * 21) + (0 * 20)

12 (1 * 101) + (2 * 100) 1100 (1 * 23) + (1 * 22) + (0 *21) + (0 * 20)

127 (1 * 102) + (1 * 101) + (2 * 100) 01111111 (0 * 27) + (1 * 26) + (1 * 25) + (1 * 24) + (1 * 23) + (1 * 22) + (1 * 21) + (1 * 20)

 byte
 The most commonly referred to unit of memory, a
grouping of 8 bits
 Can represent 265 different numbers (28)
 1 Kilobyte = 1 thousand bytes (kb)
 1 Megabyte = 1 million bytes (mb)
 1 Gigabyte = 1 billion bytes (gb)

CSE 373 23SP 5

Thought experiment
public int sum1(int n, int m, int[][] table) {
 int output = 0;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++) {
 output += table[i][j];
 }
 }
 return output;
}

 public int sum2(int n, int m, int[][] table) {
 int output = 0;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++) {
 output += table[j][i];
 }
 }
 return output;
 }

What do these two methods do?
What is the big-Θ
Θ(n*m)

CSE 373 23SP 6

Why not time code?

Actual time to completion can
vary depending on hardware,
state of computer and many
other factors.

These graphs are of times to
run add and contains on
structures of various sizes of
N and you can see
inconsistencies in individual
runs which can make
determining the overall
relationship between the
code and runtime less clear.

You can find the code to run
these tests on your own
machine on the course
website!

CSE 373 23SP 7

Incorrect Assumptions

Accessing memory is a quick and constant-time operation

Sometimes accessing memory is cheaper and easier than at other
times

Sometimes accessing memory is very slow

Lies!

CSE 373 23SP 8

RAM (Random-Access Memory)

RAM is where data gets stored for the programs you
run. Think of it as the main memory storage location
for your programs.

RAM goes by a ton of different names: memory, main
memory, RAM are all names for this same thing.

CSE 373 23SP 9

RAM can be represented as a huge array

=

This is a main
takeaway

If you’re interested in deeper than this : https://www.youtube.com/watch?v=fpnE6UAfbtU or take some EE classes?

RAM:
● addresses, storing stuff at specific locations
● random access

Arrays
● indices, storing stuff at specific locations
● random access

https://www.youtube.com/watch?v=fpnE6UAfbtU

CSE 373 23SP 10

A quick aside: Types of memory

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

Arrays - contiguous memory: when the “new” keyword is used on an array the operating
system sets aside a single, right-sized block of computer memory

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

d672 8baf 020a 713f 04e3 2e6e3 7 3

Nodes- non-contiguous memory: when the “new” keyword is used on a single node the
operating system sets aside enough space for that object at the next available memory location

array

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

4b44 052f d3cd 23d4
front 3 7 3

More on how memory impacts runtime later in this course…

CSE 373 23SP 11

Memory Architecture

CPU Register

L1 Cache

L2 Cache

RAM

Disk

What is it? Typical Size Time

The brain of the
computer!

32 bits ≈free

Extra memory to make
accessing it faster

128KB 0.5 ns

Extra memory to make
accessing it faster

2MB 7 ns

Working memory, what
your programs need

8GB 100 ns

Large, longtime storage 1 TB
8,000,000

ns

CSE 373 23SP 12

Memory Architecture

Takeaways:

● the more memory a layer can store, the slower it is (generally)
● accessing the disk is very slow

Computer Design Decisions

● Physics
● Speed of light
● Physical closeness to CPU
● Cost
● “good enough” to achieve speed
● Balance between speed and space

CSE 373 23SP 13

Locality

How does the OS minimize disk accesses?

Spatial Locality

Computers try to partition memory you are likely to use close by

● Arrays
● Fields

Temporal Locality

Computers assume the memory you have just accessed you will
likely access again in the near future

CSE 373 23SP 14

Leveraging Spatial Locality

When looking up address in “slow layer”

● bring in more than you need based on what’s nearby
● cost of bringing 1 byte vs several bytes is the same
● Data Carpool!

CSE 373 23SP 15

Memory and Locality
Memory Usage and Movement

CSE 373 23SP 16

CSE 373 23SP 17

CSE 373 23SP 18

CSE 373 23SP 19

CSE 373 23SP 20

CSE 373 23SP 21

CSE 373 23SP 22

CSE 373 23SP 23

CSE 373 23SP 24

CSE 373 23SP 25

Solution to Mercy’s traveling problem

If we know Mercy is going to keep eating tuna … why not buy
a bunch during a single trip and save them all somewhere
closer than the store?

Let’s get Mercy a refrigerator!

CSE 373 23SP 26

CSE 373 23SP 27

CSE 373 23SP 28

CSE 373 23SP 29

RAM

CPU CPU – kind of like the home /
brain of your computer. Pretty
much all computation is done
here and data needs to move
here to do anything significant
with it (math, if checks, normal
statement execution).

Data travels between RAM and
the CPU, but it’s slow

Before

CSE 373 23SP 30

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

CSE 373 23SP 31

Cache

Rough definition: a place to store some memory that’s smaller and closer to
the CPU compared to RAM. Because caches are closer to the CPU (where
your data generally needs to go to be computed / modified / acted on)
getting data from cache to CPU is a lot quicker than from RAM to CPU. This
means we love when the data we want to access is conveniently in the
cache.

Generally we always store some data here in hopes that it will be used in
the future and that we save ourselves the distance / time it takes to go to
RAM.

Analogy from earlier: The refrigerator (a cache) in your house to store food
closer to you than the store. Walking to your fridge is much quicker than
walking to the store!

CSE 373 23SP 32

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

This is a big
idea!

CSE 373 23SP 33

How is a bunch of memory taken from RAM?
● Imagine you want to retrieve the 1 at index 4 in

RAM
● Your computer is smart enough to know to grab

some of the surrounding data because computer
designers think that it’s reasonably likely you’ll
want to access that data too.
○ (You don’t have to do anything in your code

for this to happen – it happens automatically
every time you access data!)

● To answer the title question, technically the term
/ units of transfer is in terms of ‘blocks’.

This is a big idea
(continued)!

CSE 373 23SP 34

How is a bunch of memory taken from RAM?
(continued)

cache

original data (the 1) we wanted to look up gets passed back to the cpu

CPU

all the data from the
block gets brought to
the cache

CSE 373 23SP 35

How does this pattern of memory grabbing affect
our programs?

This should have a major impact on programming with arrays. Say we access an
index of an array that is stored in RAM. Because we grab a whole bunch of
contiguous memory even when we just access one index in RAM, we’ll probably
be grabbing other nearby parts of our array and storing that in our cache for
quick access later.

Imagine that the below memory is just an entire array of length 13, with some
data in it.

Just by accessing one element we bring the nearby
elements back with us to the cache. In this case, it’s almost
all of the array!

CSE 373 23SP 36

Leveraging Temporal Locality

When looking up address in “slow layer”

Once we load something into RAM or cache, keep it around or a
while

But these layers are smaller
● When do we “evict” memory to make room?

CSE 373 23SP 37

Moving Memory

Amount of memory moved from disk to RAM
● Called a “block” or “page”

○ ≈4kb
● Smallest unit of data on disk

Amount of memory moved from RAM to Cache
● called a “cache line”

○ ≈64 bytes

Operating System is the Memory Bosscontrols

● page and cache line size
● decides when to move data to cache or evict

CSE 373 23SP 38

Thought Experiment
public int sum1(int n, int m, int[][] table) {
 int output = 0;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++) {
 output += table[i][j];
 }
 }
 return output;
}

 public int sum2(int n, int m, int[][] table) {
 int output = 0;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++) {
 output += table[j][i];
 }
 }
 return output;
 }

Why does sum1 run so much faster than sum2?
sum1 takes advantage of spatial and temporal locality

0 1 2 3 4

0 1 2

‘a’ ‘b’ ‘c’

0 1 2

‘d’ ‘e’ ‘f’

0 1 2

‘g’ ‘h’ ‘i’

0 1 2

‘j’ ‘k’ ‘l’

0 1 2

‘m’ ‘n’ ‘o’

CSE 373 23SP 39

Java and Memory

What happens when you use the
“new” keyword in Java?

Your program asks the Java Virtual
Machine for more memory from the
“heap”
● Pile of recently used memory

If necessary the JVM asks Operating
System for more memory
● Hardware can only allocate in

units of page
● If you want 100 bytes you get

4kb
● Each page is contiguous

What happens when you create a new array?
● Program asks JVM for one long, contiguous chunk of

memory

What happens when you create a new object?
● Program asks the JVM for any random place in memory

What happens when you read an array index?
● Program asks JVM for the address, JVM hands off to OS
● OS checks the L1 caches, the L2 caches then RAM then

disk to find it
● If data is found, OS loads it into caches to speed up

future lookups

What happens when we open and read data
from a file?
● Files are always stored on disk, must make a disk access

CSE 373 23SP 40

Array v Linked List

Is iterating over an ArrayList faster than iterating over a
LinkedList?

Answer:

LinkedList nodes can be stored in memory, which means the
don’t have spatial locality. The ArrayList is more likely to be
stored in contiguous regions of memory, so it should be quicker
to access based on how the OS will load the data into our
different memory layers.

CSE 373 23SP 41

Questions?

CSE 373 23SP 42

That’s all!

