
 1CSE 373 23SP

Lecture 25: P vs NP CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Announcements

● Final exam TA lead review after class today
● Please fill out the section final review survey to help your TAs

play for tomorrow’s section
● P4 - please get started on Seam Carving if you haven’t already

○ TAs posted a P4 walk through to help clarify
○ Note that office hours will end on week 10
○ You cannot use late days for P4 (I already made the turn in as late as I can

accept assignments)
● Please nominate your TAs for an award!

○ TO NOMINATE GO TO:
https://www.cs.washington.edu/students/ta/bandes

Slido Event #7165864
https://app.sli.do/event/h2T
aZahvBEHWg2h79kNHxC

https://www.cs.washington.edu/students/ta/bandes
https://app.sli.do/event/h2TaZahvBEHWg2h79kNHxC
https://app.sli.do/event/h2TaZahvBEHWg2h79kNHxC

CSE 373 23SP 3

P vs. NP

P vs NP Explained (YouTube)

https://www.youtube.com/watch?v=YX40hbAHx3s

CSE 373 23SP 4

A brief history of computer science problem solving

● The field of “computer science” is the pursuit of determining
how to use “computers” to help solve human problems

● 1843 the first “computer” is designed to solve bernouli’s
numbers, a very difficult calculation

● 1943 the MARC II is designed to solve missile trajectory and
other military calculations

● 1960s computers begin to become more generalized,
researchers start looking for ways to use computers beyond
basic math computations

● 1970s researchers are exploring what types of problems
computers can help with, and finding themselves stuck and
unsure if there exists a computer assisted solution or not…

CSE 373 23SP 5

1970s computer science research

● Researchers were collecting problems to solve
○ Some problems resulted in algorithms that could “efficiently” find a

solution
● When researchers were stuck on a problem they turned to

“reductions” to see if they could apply a newly discovered
algorithm to their own problem

● To help one another understand if they were working on an
unsolved problem or not researchers started to categorize
problems into complexity classes…
○ Enter “complexity research”

CSE 373 23SP 6

“Efficiency”

So far you’ve only met problems that have an “efficient” solution

For our purposes “efficient” essentially means “can be executed by current day computers”

Formally we will consider any code that can run in polynomial or “P” time to be “efficient”

P complexity class

The set of all decision problems that have an algorithm that
runs in time O(nk) for some constant k

Are these algorithms always actually efficient?

Well… no

Your n10000 algorithm or 10000n3 algorithms probably aren’t going to finish anytime
soon, but these edge cases are rare, and polynomial time is good as a low bar

CSE 373 23SP 7

“Efficiency” at scale

We have seen some inefficient algorithms

● Recursive backtracking (kn where k represents number of choices)
● Recursive fibonacci (2n)

But as long as n is small we can still compute them

N3 solution where n= 100 takes ~3 hrs

2n solution where n = 10 takes ~milliseconds,

but n = 100 takes 300 quintillion years (longer than the age of the universe)

CSE 373 23SP 8

Running Times

Table from Rosen’s Discrete Mathematics textbook
How big of a problem can we solve for an algorithm with the given running times?
“*” means more than 10100 years.

CSE 373 23SP 9

Aside: Decision Problems

Today’s goal is to break problems into solvable/not solvable categories

For today, we’re going to talk about decision problems.
● Problems that have a “yes” or “no” answer.

Why?

Theory reasons / how we translate problems for computer understanding

But it’s not too bad
● most problems can be rephrased as very similar decision problems

E.g. instead of “find the shortest path from s to t” ask,
● Is there a path from s to t length at most k?

CSE 373 23SP 10

NP Complexity Class

2-Coloring:
Can you color vertices of a
graph red and blue so every
edge has differently colored
endpoints?

2-SAT:
Given a set of variables and a list of
requirements:
(variable==[T/F] || variable==[T/F])
Find a setting of the variables to
make every requirement true.

The spanning tree itself.
Verify by checking it really
connects every vertex and its
weight. The assignment of variables.

Verify by checking each
requirement.

The coloring.
Verify by checking each edge.

Decision Problems such that:
● If the answer is YES, you can prove the answer is yes by

○ A given “proof” or a “certificate” can be verified in
polynomial time

○ Puzzle problems where a given answer can be either
confirmed or rejected

● What certificate would be convenient for short paths?
○ The path itself. Easy to check the path is really in the

graph and really short.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems such that if the
answer is YES, there is a proof of that which can be
verified in polynomial time

Light Spanning Tree:
IS there a spanning tree of
graph G of weight at most k?

CSE 373 23SP 11

P vs. NP, the conundrum

Does being able to quickly validate a correct solution also mean you can
quickly find a correct solution?

No one knows the answer to this question.

In fact, it’s the biggest open problem in Computer Science.

Are P and NP the same complexity class?
That is, can every problem that can be verified in polynomial
time also be solved in polynomial time.

P vs. NP

CSE 373 23SP 12

P vs NP

P problems
problems with an efficient solution NP problems

problems with an efficient solution verification

Satisfiability (SAT)

Travelling salesman (hamiltonian circuit)finding primes

Job scheduling

Database problems

multiplication

sorting

Can we PROVE that all problems with an efficiently
verifiable solution can be solved efficiently?

sudoku

Did I make the best chess move possible?

Will all NP problems be
discovered to also be in P?

maze solvers (dijkstra's)

MSTs

knapsack

Graph coloring

Protein folding

2SAT

Graph 2 Color

EXP problems
problems with bounded by an exponential

computation or verification

CSE 373 23SP 13

Searching for a solution to P v NP

CSE 373 23SP 14

Hard Problems

Let’s say we want to prove that every problem in NP can actually be solved efficiently.

We might want to start with a really hard problem in NP.

What is the hardest problem in NP?

What does it mean to be a hard problem?

Reductions are a good definition:
● If A reduces to B then “A ≤ B” (in terms of difficulty)

○ Once you have an algorithm for B, you have one for A automatically from the
reduction!

Does there exist an algorithm that all NP problems reduce to?

CSE 373 23SP 15

NP-Completeness

An NP-complete problem is a “hardest” problem in NP.
If you have an algorithm to solve an NP-complete problem, you have an
algorithm for every problem in NP.
An NP-complete problem is a universal language for encoding “I’ll know
it when I see it” problems.

Does one of these exist?

The problem B is NP-complete if B is in NP and
for all problems A in NP, A reduces to B.

NP-complete

CSE 373 23SP 16

NP Completeness

NP problems
problems with an efficient solution verification

Travelling salesman (hamiltonian circuit)

Job scheduling

Database problems

sudoku

Did I make the best chess move possible?

P problems
problems with an efficient solution

finding primes

multiplication

sorting

maze solvers (dijkstra's)

MSTs

knapsack

Protein folding

NP complete problems
NP problems that all reduce to one another

reduction
Graph coloring

Satisfiability (SAT)

CSE 373 23SP 17

NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete
Cook-Levin Theorem (1971)

This sentence (and the proof of it) won Cook the Turing Award.

CSE 373 23SP 18

2-SAT vs. 3-SAT

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

2-Satisfiability (“2-SAT”)

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False]||variable2==[True/False]||variable3==[True/False]
Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

3-Satisfiability (“3-SAT”)

CSE 373 23SP 19

2-SAT vs. 3-SAT

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

2-Satisfiability (“2-SAT”)

Our first try at 2-SAT (just try all variable settings) would have taken O(2Q S) time

But we came up with a really clever graph that reduced the time to O(Q + S) time

CSE 373 23SP 20

2-SAT vs. 3-SAT

Can we do the same for 3-SAT? NO
recurrence

NO
Big-O

Given: A set of Boolean variables, and a list of requirements, each of the form:
variable1==[True/False]||variable2==[True/False]||variable3==[True/False]
Find: A setting of variables to “true” and “false” so that all of the requirements
evaluate to “true”

3-Satisfiability (“3-SAT”)

For 2-SAT we thought we had 2Q options, but we realized that we didn’t have as many
choices as we thought - once we made a few choices, out hand was forced and we didn't
have to check all possibilities.

CSE 373 23SP 21

NP-Complete Problems

But Wait! There’s more!

A lot of problems are
NP-complete

Karp’s Theorem (1972)

CSE 373 23SP 22

NP-Complete Problems

But Wait! There’s more!

By 1979, at least 300 problems had been
proven NP-complete.

Garey and Johnson put a list of all the
NP-complete problems they could find in
this textbook.

Took almost 100 pages to just list them all.

No one has made a comprehensive list since.

CSE 373 23SP 23

NP-Complete Problems

But Wait! There’s more!

In the last month, mathematicians and computer scientists have put
papers on the arXiv claiming to show (at least) 25 more problems are
NP-complete.

There are literally thousands of NP-complete problems known.

And some of them look weirdly similar to problems we’ve already
studied.

CSE 373 23SP 24

Examples

In P NP-Complete

There are literally thousands of NP-complete problems.
And some of them look weirdly similar to problems we do know
efficient algorithms for.

Short Path

Given a directed graph, report if there is a
path from s to t of length at most k

Long Path

Given a directed graph, report if there is a
path from s to t of length at least k

CSE 373 23SP 25

Examples

The electric company just needs a greedy algorithm to lay its wires.
Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete

Light Spanning Tree

Given a weighted graph, find a spanning
tree (a set of edges that connect all
vertices) of weight at most k

Traveling Salesperson

Given a weighted graph, find a tour (a walk
that visits every vertex and returns to its
start) of minimum weight

CSE 373 23SP 26

Dealing with NP-Completeness

Option 1: Maybe it’s a special case we understand

Maybe you don’t need to solve the general problem, just a special case

Option 2: Maybe it’s a special case we don’t understand (yet)

There are algorithms that are known to run quickly on “nice” instances.
Maybe your problem has one of those.

One approach: Turn your problem into a SAT instance, find a solver and
cross your fingers.

CSE 373 23SP 27

Dealing with NP-Completeness

Option 3: Approximation Algorithms

You might not be able to get an exact answer, but you might be
able to get close.

Given a weighted graph, find a tour (a walk that visits every vertex
and returns to its start) of weight at most k.

Optimization version of Traveling Salesperson

Algorithm:
Find a minimum spanning tree.
Have the tour follow the visitation order of a DFS of the spanning tree.
Theorem: This tour is at most twice as long as the best one.

CSE 373 23SP 28

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

● $1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they
listed)

● To get a Turing Award

CSE 373 23SP 29

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

● $1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they
listed)

● To get a Turing Award

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

● $1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they
listed)

● To get a Turing Award the Turing Award named after you

CSE 373 23SP 30

Why Should You Care if P=NP?

Suppose P=NP.

Specifically that we found a genuinely in-practice efficient algorithm for
an NP-complete problem. What would you do?
● $1,000,000 from the Clay Math Institute obviously, but what’s next?

CSE 373 23SP 31

Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an
NP-complete problem. What would you do?
● Another $5,000,000 from the Clay Math Institute
● Put mathematicians out of work.
● Decrypt (essentially) all current internet communication.
● No more secure online shopping or online banking or

online messaging…or online anything.
● Cure cancer with efficient protein folding

A world where P=NP is a very very different place from the
world we live in now.

CSE 373 23SP 32

We already expect P ≠ NP. Why should you care when we finally
prove it?

P ≠ NP says something fundamental about the universe.

For some questions there is not a clever way to find the right answer
● Even though you’ll know it when you see it
● Some problems require “creative leaps” to find a solution that

cannot be programmed

There is actually a way to obscure information, so it cannot be found
quickly no matter how clever you are.

Why Should You Care if P≠NP?

CSE 373 23SP 33

 To prove P≠NP we need to better understand the differences between
problems.
● Why do some problems allow easy solutions and others don’t?
● What is the structure of these problems?

 We don’t care about P vs NP just because it has a huge effect about
what the world looks like.

 We will learn a lot about computation along the way.

Why Should You Care if P≠NP?

If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no
special value in “creative leaps”, no fundamental gap between solving a problem and recognizing the solution once
it’s found. Everyone who could appreciate a symphony would be Mozart. Everyone who could follow a step by step
argument would be Gauss” -Scott Aaronson, MIT complexity researcher

CSE 373 23SP 34

Questions?

CSE 373 23SP 35

That’s all!

