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Lecture 24: Reductions CSE 373: Data Structures and 
Algorithms
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Warm Up

Dynamic Programming is…

A. A programming technique used to dynamically allocate the 
machine running your logic to allow for larger scale 
processing

B. A way to make recursion faster
C. An algorithmic optimization technique that reduces 

redundant calculations by recognizing the final solution is a 
summation of smaller subproblems

D. When you store previous calculations in a memo to use in 
later recursive calls

Slido Event #8930126
https://app.sli.do/event/x9Uf
8FRMoxbJA52gEN6E1U  

https://app.sli.do/event/x9Uf8FRMoxbJA52gEN6E1U
https://app.sli.do/event/x9Uf8FRMoxbJA52gEN6E1U
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Announcements

● Practice final posted (see Ed post)
● TA lead final review this Wednesday after lecture (in lecture hall)
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The 2 Sat Solver
Reductions
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Review: Topological Sort

Perform a topological sort of the following DAG

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we add it to the ordering
If the only incoming edges are from vertices already in the ordering, then add to ordering 

A C B D E

Given: a directed graph G
Find: an ordering of the vertices so all 
edges go from left to right. 

Topological Sort

A directed graph without any cycles.

Directed Acyclic Graph (DAG)
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Strongly Connected Components

Note: the direction of the edges matters!

A subgraph C such that every pair of vertices in C is connected 
via some path in both directions, and there is no other vertex 
which is connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E
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Why Find SCCs?

Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
● Have a vertex for each of the strongly connected components
● Add an edge from component 1 to component 2 if there is an edge from a vertex 

inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2
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Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the 
original graph. 
● I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get 

from 1 to 3 in H. 

D

C F

B EA K

J

1

3 4

2
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Why Must H Be a DAG?

H is always a DAG (i.e. it has no cycles). Do you see why?

If there were a cycle, I could get from component 1 to 
component 2 and back, but then they’re actually the same 
component!
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Takeaways

Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your 
graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at 
least as long.

You should think of these as “almost free” preprocessing of your graph. 
Your other graph algorithms only need to work on 

○ topologically sorted graphs 
○ strongly connected graphs 
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A Longer Example

The best way to really see why this is useful is to do a bunch of examples. 

We don’t have time. The second best way is to see one example right now...

This problem doesn’t look like it has anything to do with graphs 
● no maps
● no roads
● no social media friendships

Nonetheless, a graph representation is the best one.

I don’t expect you to remember the details of this algorithm.

I just want you to see:
● graphs can show up anywhere
● SCCs and Topological Sort are useful algorithms
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Example Problem: Final Review

We have a long list of types of problems we might want to put on the final. 
● Heap insertion problem, big-O problems, finding closed forms of recurrences, graph 

modeling…
● What if we let the students choose the topics?

To try to make you all happy, we might ask for your preferences. Each of you gives us 
two preferences of the form “I [do/don’t] want a [topic] problem on the exam” *

We’ll assume you’ll be happy if you get at least one of your two preferences.

*This is NOT how Kasey is making the final ;)

Given: A list of 2 preferences per student.
Find: A set of questions so every student gets at least one of their 
preferences (or accurately report no such question set exists).

Final Creation Problem
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Review Creation: Take 1

We have Q kinds of questions and S students.
What if we try every possible combination of questions.
How long does this take? O(2QS)
If we have a lot of questions, that’s really slow.

Instead we’re going to use a graph
What should our vertices be?
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Review Creation: Take 2
Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:

If we don’t include a big-O proof, can you still be happy?
If we do include a recurrence can you still be happy?

Yes! 
Big-O

NO 
recurrence

Yes! 
recurrence

NO 
Graph

NO 
Big-O

Yes!
Graph

NO 
Heaps

Yes! 
Heaps

Problem YES NO

Big-O   X

Recurrence    X 

Graph

Heaps

Problem YES NO

Big-O   

Recurrence   X     

Graph   X

Heaps
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Review Creation: Take 2

Hey we made a graph!

What do the edges mean? 

Each edge goes from something making someone unhappy, to the only 
thing that could make them happy.
● We need to avoid an edge that goes TRUE THING 🡪 FALSE THING

NO 
recurrence

NO 
Big-O

True
False
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We need to avoid an edge that goes TRUE THING 🡪 FALSE THING

Let’s think about a single SCC of the graph. 

Can we have a true and false statement in the same SCC?

What happens now that Yes B and NO B are in the same SCC?

NO 
C

Yes
A

NO 
BYes

B

NO 
E

Review Creation: Take 2
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Final Creation: SCCs

The vertices of a SCC must either be all true or all false.

Algorithm Step 1: Run SCC on the graph. Check that each 
question-type-pair are in different SCC.

Now what? Every SCC gets the same value. 
● Treat it as a single object! 

We want to avoid edges from true things to false things. 
● “Trues” seem more useful for us at the end. 

Is there some way to start from the end?
● YES! Topological Sort 
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NO 
C

Yes
A

NO 
DYes

B

NO 
E

Yes
C
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A

Yes 
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B
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E

NO 
F

Yes
F

Yes
H

Yes
G

NO 
H

NO 
G
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Making the Final

Algorithm:
Make the requirements graph.

Find the SCCs.

If any SCC has including and not including a problem, we can’t make the final.

Run topological sort on the graph of SCC. 

Starting from the end:
● If everything in a component is unassigned, set them to true, and set their opposites to 

false.

This works!!

How fast is it? 

O(Q + S). That’s a HUGE improvement.



CSE 373 23SP  23

Some More Context

The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and needed 
to satisfy everything in a list of requirements. 

The algorithm we just made for Final Creation works for any 2-SAT 
problem. 

Given: A set of Boolean variables, and a list of requirements, each of the 
form: 
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the 
requirements evaluate to “true”

2-Satisfiability (“2-SAT”)
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The 2 Sat Solver
Reductions
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2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to 
explain why one doesn’t exist.

B

D
E

A

C B

D
E

A

C

2-Coloring

Given an undirected, unweighted graph G, color each vertex “red” or “blue” such 
that the endpoints of every edge are different colors (or report no such coloring 
exists).
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2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to 
explain why one doesn’t exist.

B

D
E

A

C B

D
E

A

C
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What are we doing?

To wrap up the course we want to take a big step back. 

This whole quarter we’ve been taking problems and solving them 
faster. 

We want to spend the last few lectures going over more ideas on 
how to solve problems faster, and why we don’t expect to solve 
everything extremely quickly.

We’re going to
● Recall reductions 
● Classify problems into those we can solve in a reasonable amount of 

time, and those we can’t
● Explain the biggest open problem in Computer Science
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Reductions: Take 2

You already do this all the time.

In Homework 2, you reduced implementing a hashset to implementing a 
hashmap. 

Any time you use a library, you’re reducing your problem to the one the 
library solves.

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)
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Weighted Graphs: A Reduction

s

u

v
t

2
2

2

1

1

s

u

v

t

s

u

v
t 2s

u

v
t2

2

2

1

1

2

Transform Input

Unweighted Shortest Path

Transform Output
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Reductions

It might not be too surprising that we can solve one shortest 
path problem with the algorithm for another shortest path 
problem.

The real power of reductions is that you can sometimes 
reduce a problem to another one that looks very very 
different.

We’re going to reduce a graph problem to 2-SAT. 

2-Coloring

Given an undirected, unweighted graph G, color each vertex “red” or “blue” such 
that the endpoints of every edge are different colors (or report no such coloring 
exists).
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2-Coloring

Why would we want to 2-color a graph?
● We need to divide the vertices into two sets, and edges 

represent vertices that can’t be together.

You can modify BFS to come up with a 2-coloring (or 
determine none exists)
● This is a good exercise!

But coming up with a whole new idea sounds like work.

And we already came up with that cool 2-SAT algorithm. 
● Maybe we can be lazy and just use that!
● Let’s reduce 2-Coloring to 2-SAT!

Use our 2-SAT algorithm 
to solve 2-Coloring
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A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the original 
2-coloring problem.

How can I describe a two coloring of my graph? 
Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint 
and one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)
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AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D
EA

C

B

D
EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)

Transform Input

2-SAT Algorithm

Transform Output
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Questions?
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That’s all!


