
 1CSE 373 23SP

Lecture 24: Reductions CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

Dynamic Programming is…

A. A programming technique used to dynamically allocate the
machine running your logic to allow for larger scale
processing

B. A way to make recursion faster
C. An algorithmic optimization technique that reduces

redundant calculations by recognizing the final solution is a
summation of smaller subproblems

D. When you store previous calculations in a memo to use in
later recursive calls

Slido Event #8930126
https://app.sli.do/event/x9Uf
8FRMoxbJA52gEN6E1U

https://app.sli.do/event/x9Uf8FRMoxbJA52gEN6E1U
https://app.sli.do/event/x9Uf8FRMoxbJA52gEN6E1U

CSE 373 23SP 3

Announcements

● Practice final posted (see Ed post)
● TA lead final review this Wednesday after lecture (in lecture hall)

CSE 373 23SP 4

The 2 Sat Solver
Reductions

CSE 373 23SP 5

Review: Topological Sort

Perform a topological sort of the following DAG

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we add it to the ordering
If the only incoming edges are from vertices already in the ordering, then add to ordering

A C B D E

Given: a directed graph G
Find: an ordering of the vertices so all
edges go from left to right.

Topological Sort

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

CSE 373 23SP 6

Strongly Connected Components

Note: the direction of the edges matters!

A subgraph C such that every pair of vertices in C is connected
via some path in both directions, and there is no other vertex
which is connected to every vertex of C in both directions.

Strongly Connected Component

D

B C

A E

CSE 373 23SP 7

Why Find SCCs?

Graphs are useful because they encode relationships between arbitrary objects.

We’ve found the strongly connected components of G.

Let’s build a new graph out of them! Call it H
● Have a vertex for each of the strongly connected components
● Add an edge from component 1 to component 2 if there is an edge from a vertex

inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2

CSE 373 23SP 8

Why Find SCCs?

That’s awful meta. Why?

This new graph summarizes reachability information of the
original graph.
● I can get from A (of G) in 1 to F (of G) in 3 if and only if I can get

from 1 to 3 in H.

D

C F

B EA K

J

1

3 4

2

CSE 373 23SP 9

Why Must H Be a DAG?

H is always a DAG (i.e. it has no cycles). Do you see why?

If there were a cycle, I could get from component 1 to
component 2 and back, but then they’re actually the same
component!

CSE 373 23SP 10

Takeaways

Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your
graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at
least as long.

You should think of these as “almost free” preprocessing of your graph.
Your other graph algorithms only need to work on

○ topologically sorted graphs
○ strongly connected graphs

CSE 373 23SP 11

A Longer Example

The best way to really see why this is useful is to do a bunch of examples.

We don’t have time. The second best way is to see one example right now...

This problem doesn’t look like it has anything to do with graphs
● no maps
● no roads
● no social media friendships

Nonetheless, a graph representation is the best one.

I don’t expect you to remember the details of this algorithm.

I just want you to see:
● graphs can show up anywhere
● SCCs and Topological Sort are useful algorithms

CSE 373 23SP 12

Example Problem: Final Review

We have a long list of types of problems we might want to put on the final.
● Heap insertion problem, big-O problems, finding closed forms of recurrences, graph

modeling…
● What if we let the students choose the topics?

To try to make you all happy, we might ask for your preferences. Each of you gives us
two preferences of the form “I [do/don’t] want a [topic] problem on the exam” *

We’ll assume you’ll be happy if you get at least one of your two preferences.

*This is NOT how Kasey is making the final ;)

Given: A list of 2 preferences per student.
Find: A set of questions so every student gets at least one of their
preferences (or accurately report no such question set exists).

Final Creation Problem

CSE 373 23SP 13

Review Creation: Take 1

We have Q kinds of questions and S students.
What if we try every possible combination of questions.
How long does this take? O(2QS)
If we have a lot of questions, that’s really slow.

Instead we’re going to use a graph
What should our vertices be?

CSE 373 23SP 14

Review Creation: Take 2
Each student introduces new relationships for data:

Let’s say your preferences are represented by this table:

If we don’t include a big-O proof, can you still be happy?
If we do include a recurrence can you still be happy?

Yes!
Big-O

NO
recurrence

Yes!
recurrence

NO
Graph

NO
Big-O

Yes!
Graph

NO
Heaps

Yes!
Heaps

Problem YES NO

Big-O X

Recurrence X

Graph

Heaps

Problem YES NO

Big-O

Recurrence X

Graph X

Heaps

CSE 373 23SP 15

Review Creation: Take 2

Hey we made a graph!

What do the edges mean?

Each edge goes from something making someone unhappy, to the only
thing that could make them happy.
● We need to avoid an edge that goes TRUE THING 🡪 FALSE THING

NO
recurrence

NO
Big-O

True
False

CSE 373 23SP 16

We need to avoid an edge that goes TRUE THING 🡪 FALSE THING

Let’s think about a single SCC of the graph.

Can we have a true and false statement in the same SCC?

What happens now that Yes B and NO B are in the same SCC?

NO
C

Yes
A

NO
BYes

B

NO
E

Review Creation: Take 2

CSE 373 23SP 17

Final Creation: SCCs

The vertices of a SCC must either be all true or all false.

Algorithm Step 1: Run SCC on the graph. Check that each
question-type-pair are in different SCC.

Now what? Every SCC gets the same value.
● Treat it as a single object!

We want to avoid edges from true things to false things.
● “Trues” seem more useful for us at the end.

Is there some way to start from the end?
● YES! Topological Sort

CSE 373 23SP 18

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G

CSE 373 23SP 19

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G

CSE 373 23SP 20

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G 1

6

5

2
3

4

CSE 373 23SP 21

NO
C

Yes
A

NO
DYes

B

NO
E

Yes
C

NO
A

Yes
DNO

B

Yes
E

NO
F

Yes
F

Yes
H

Yes
G

NO
H

NO
G 1

6

5

2
3

4 True

False

True

False

True

False

CSE 373 23SP 22

Making the Final

Algorithm:
Make the requirements graph.

Find the SCCs.

If any SCC has including and not including a problem, we can’t make the final.

Run topological sort on the graph of SCC.

Starting from the end:
● If everything in a component is unassigned, set them to true, and set their opposites to

false.

This works!!

How fast is it?

O(Q + S). That’s a HUGE improvement.

CSE 373 23SP 23

Some More Context

The Final Making Problem was a type of “Satisfiability” problem.

We had a bunch of variables (include/exclude this question), and needed
to satisfy everything in a list of requirements.

The algorithm we just made for Final Creation works for any 2-SAT
problem.

Given: A set of Boolean variables, and a list of requirements, each of the
form:
variable1==[True/False] || variable2==[True/False]

Find: A setting of variables to “true” and “false” so that all of the
requirements evaluate to “true”

2-Satisfiability (“2-SAT”)

CSE 373 23SP 24

The 2 Sat Solver
Reductions

CSE 373 23SP 25

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to
explain why one doesn’t exist.

B

D
E

A

C B

D
E

A

C

2-Coloring

Given an undirected, unweighted graph G, color each vertex “red” or “blue” such
that the endpoints of every edge are different colors (or report no such coloring
exists).

CSE 373 23SP 26

2-Coloring

Can these graphs be 2-colored? If so find a 2-coloring. If not try to
explain why one doesn’t exist.

B

D
E

A

C B

D
E

A

C

CSE 373 23SP 27

What are we doing?

To wrap up the course we want to take a big step back.

This whole quarter we’ve been taking problems and solving them
faster.

We want to spend the last few lectures going over more ideas on
how to solve problems faster, and why we don’t expect to solve
everything extremely quickly.

We’re going to
● Recall reductions
● Classify problems into those we can solve in a reasonable amount of

time, and those we can’t
● Explain the biggest open problem in Computer Science

CSE 373 23SP 28

Reductions: Take 2

You already do this all the time.

In Homework 2, you reduced implementing a hashset to implementing a
hashmap.

Any time you use a library, you’re reducing your problem to the one the
library solves.

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)

CSE 373 23SP 29

Weighted Graphs: A Reduction

s

u

v
t

2
2

2

1

1

s

u

v

t

s

u

v
t 2s

u

v
t2

2

2

1

1

2

Transform Input

Unweighted Shortest Path

Transform Output

CSE 373 23SP 30

Reductions

It might not be too surprising that we can solve one shortest
path problem with the algorithm for another shortest path
problem.

The real power of reductions is that you can sometimes
reduce a problem to another one that looks very very
different.

We’re going to reduce a graph problem to 2-SAT.

2-Coloring

Given an undirected, unweighted graph G, color each vertex “red” or “blue” such
that the endpoints of every edge are different colors (or report no such coloring
exists).

CSE 373 23SP 31

2-Coloring

Why would we want to 2-color a graph?
● We need to divide the vertices into two sets, and edges

represent vertices that can’t be together.

You can modify BFS to come up with a 2-coloring (or
determine none exists)
● This is a good exercise!

But coming up with a whole new idea sounds like work.

And we already came up with that cool 2-SAT algorithm.
● Maybe we can be lazy and just use that!
● Let’s reduce 2-Coloring to 2-SAT!

Use our 2-SAT algorithm
to solve 2-Coloring

CSE 373 23SP 32

A Reduction

We need to describe 2 steps

1. How to turn a graph for a 2-color problem into an input to 2-SAT

2. How to turn the ANSWER for that 2-SAT input into the answer for the original
2-coloring problem.

How can I describe a two coloring of my graph?
Have a variable for each vertex – is it red?

How do I make sure every edge has different colors? I need one red endpoint
and one blue one, so this better be true to have an edge from v1 to v2:

(v1IsRed || v2isRed) && (!v1IsRed || !v2IsRed)

CSE 373 23SP 33

AisRed = True
BisRed = False
CisRed = True
DisRed = False
EisRed = True

B

D
EA

C

B

D
EA

C
(AisRed||BisRed)&&(!AisRed||!BisRed)
(AisRed||DisRed)&&(!AisRed||!DisRed)
(BisRed||CisRed)&&(!BisRed||!CisRed)
(BisRed||EisRed)&&(!BisRed||!EisRed)
(DisRed||EisRed)&&(!DisRed||!EisRed)

Transform Input

2-SAT Algorithm

Transform Output

CSE 373 23SP 34

Questions?

CSE 373 23SP 35

That’s all!

