
 1CSE 373 23SP

Lecture 23: Dynamic
Programming

CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up
Apply Bucket Sort and Radix Sort to the sequence

[7625, 5002, 6746, 7403, 2266, 5532, 2010]

0

1

2 2266, 2010

3

4

5 5002, 5532

6 6746

7 7625, 7403

8

9

0

1

2 2010, 2266

3

4

5 5002, 5531

6 6746

7 7625, 7403

8

9

0 2010

1

2 5002, 5532

3 7403

4

5 7625

6 6746, 2266

7

8

9

0 5002, 7403

1 2010

2 7625

3 5532

4 6746

5

6 2266

7

8

9

0 5002, 2010

1

2 2266

3

4 7403

5 5532

6 7625

7 6746

8

9

0

1

2 2010, 2266

3

4

5 5002, 5532

6 6746

7 7403, 7625

8

9

Bucket
Radix

1 scatter to buckets, perform insertion on
each bucket, gather buckets

4 phases of scatter from list to buckets based on each digit place in the entries

Slido Event #3876460
https://app.sli.do/event/q3q
keoafKp3k9JMJkKTqNm

https://app.sli.do/event/q3qkeoafKp3k9JMJkKTqNm
https://app.sli.do/event/q3qkeoafKp3k9JMJkKTqNm

CSE 373 23SP 3

Announcements

● EX 6 due Monday
● EX 7 releases Monday (last exercise)
● Final exam next Friday!

○ Practice final getting posted to website

CSE 373 23SP 4

Sorting Summary

CSE 373 23SP 5

Radix Sort

● Radix = “the base of a number system”
○ We will use “10” as we are comfortable with 10 based systems
○ Could use any value, such as 128 for ASCII strings

● Idea
○ Bucket sort on one digit at a time

■ Only works on sequences of countable data: ints, doubles, stings

○ Number of buckets = radix
○ Start with least significant digit, do one pass of bucket sort per digit

● Fun fact: invented in 1890 as part of US census

[170, 45, 75, 90, 802, 24, 2, 66]

[170, 90, 802, 2, 24, 45, 75, 66]

[802, 2, 24, 45, 66, 170, 75, 90]

[2, 24, 45, 66, 75, 90, 170, 802]

Input:

ones:

tens:

hundreds:

Example Walk Through Video

https://www.youtube.com/watch?v=nu4gDuFabIM

CSE 373 23SP 6

O(n)O(n)

Radix Sort

[478, 537, 9, 721, 3, 38, 143, 67]

0

1 721

2

3 3, 143

4

5

6

7 537, 67

8 478, 38

9 9

0 03, 09

1

2 721

3 537, 38

4 143

5

6 67

7 478

8

9

[721, 3, 143, 537, 67, 478, 38, 9] [3, 9, 721, 537, 38, 143, 67, 478]

0 003, 009, 038, 067

1 143

2

3

4 478

5 537

6

7 721

8

9

[3, 9, 38, 67, 143, 478, 537, 721]

O(n)
O(n) O(n)

O(n)

CSE 373 23SP 7

Sorting: Summary

Best-Case Worst-Case Space Stable

Selection Sort O(n2) O(n2) O(1) No

Insertion Sort O(n) O(n2) O(1) Yes

Heap Sort O(nlogn) O(nlogn) O(n) No

In-Place Heap Sort O(nlogn) O(nlogn) O(1) No

Merge Sort O(nlogn) O(nlogn) O(nlogn)
O(n)* optimized

Yes

Quick Sort O(nlogn) O(n2) O(n) No

In-place Quick Sort O(nlogn) O(n2) O(1) No

Bucket Sort O(n) O(n2) O(K+n) Yes

Radix O(n) O(n) O(n) Yes

What does Java do?
● Actually uses a combination of 3

different sorts:
○ If objects: use Merge Sort*

(stable!)
○ If primitives: use Dual Pivot

Quick Sort
○ If “reasonably short” array of

primitives: use Insertion Sort
■ Researchers say 48 elements

Key Takeaway: No single
sorting algorithm is “the best”!
● Different sorts have different

properties in different situations
● The “best sort” is one that is

well-suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different

CSE 373 23SP 8

What Else is There?

Can we do better than n log n?
● For comparison sorts, NO. A proven lower bound!

○ Intuition: n elements to sort, no faster way to find “right place” than log n
● However, niche sorts can do better in specific situations!

Many cool niche sorts beyond the scope of 373!
Counting Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/External_sorting

CSE 373 23SP 9

Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem

CSE 373 23SP 10

What is Dynamic Programming
An algorithmic technique of optimizing a given algorithm by:

● Identifying the final solution as a summation of solutions to smaller sub problems
○ Building off of “divide and conquer”

● Intelligently ordering our solutions to the sub-problems to build up to the final
solution

CSE 373 23SP 11

Dynamic Programming Techniques
1. Design “brute force” recursive solution

2. Take a recursive algorithm and find the overlapping subproblems, then cache
the results for future recursive calls. (Memoize)
a. Store subproblems of the main problem so we don’t have to re-compute

them when we need them later on in solving the main problem

3. Bottom up approach

A little confusing? Don’t worry, you are not alone!

CSE 373 23SP 12

Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem

CSE 373 23SP 13

Question

Given a number n, print n-th Fibonacci Number.

Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)

How can we solve this problem in the most optimized way?

CSE 373 23SP 14

Clarify
1. Can n be a non-positive number?

a. Depends, n can be 0, but not negative.

2. Can we use additional data structures?
a. Yes, assume we want the fastest overall runtime.

3. What should be the result when n = 0?
a. The result should be 0, before the first 1 in the

sequence 1, 1, 2, …,Fib(n)

CSE 373 23SP 15

Example

Edge Case 1:

n = 0; Fib = None

Output = 0

Edge Case 2:

n = 1; Fib = 1

Output = 1

Middle Case 1:

n = 2; Fib = 1, 1

Output = 1

Middle Case 2:

n = 9; Fib = 1, 1, 2, 3, 5, 8,

13, 21, 34

Output = 34

CSE 373 23SP 16

Approach

Brute Force:

1. Use a recursive function to solve

2. Starting with n and descending down, recursively return the
addition of the last and second to last numbers of our sequence

3. End our recursion when we hit our base case n = 1

Has O(2n) runtime with O(n) space complexity…

There is a faster way using Dynamic Programming…

CSE 373 23SP 17

Recursive Solution

public static int fib(int n) {

 if (n <= 1) {

 return n;

 }

 return fib(n-1) + fib(n-2);

}

CSE 373 23SP 18

Memoized Dynamic Programming Solution

public int fib(int n, int[] memo) {

 if (memo[n] != null) {

 return memo[n];

 } else if (n == 0 || n == 1) {

 return 1;

 } else {

 int result = fib(n-1) + fib(n-2);

 memo[n] = result;

 return result;

 }

}

Detailed walkthrough of this solution

2n+1 recursive calls gives us O(n) instead of O(2n)

0 1 2 3 4 5

0 1 1 2 3 5

memo[] =

* because of pass by reference for Arrays there is only ever one array and we are
simply returning the reference to the updated Array, not remaking it with each
recursive call

https://www.youtube.com/watch?v=vYquumk4nWw

CSE 373 23SP 19

Bottom Up Dynamic Programming Solution

public int fib(int n) {

 int f[] = new int[n+1];

 f[1] = 1;

 f[2] = 1;

 for (int i = 3; i <= n; i++) {

 f[i] = f[i-1] + f[i-2];

 }

 return f[n];

}

Detailed walkthrough of this solution

https://www.youtube.com/watch?v=vYquumk4nWw

CSE 373 23SP 20

Optimize

 Optimized: Use Dynamic Programming to pre-compute Fib sequence up
until n and return. Runs in O(N) runtime.

 Optimized no additional data structure: We compute the value of our
current term with a fixed number of elements. O(1)

 Note: When you are computing a value in a sequence in an interview,
think about using DP if applicable.

CSE 373 23SP 21

Implement

 Create 3 variables to hold our second last value, our last value, and
our current value with respect to our current term in the sequence
when iterating.

 Iterate in a for-loop until we hit term n and add our last and
second last values and set them equal to our current value.

 When we exit the for-loop, we will have computed the Fibonacci
value at n.

CSE 373 23SP 22

Implement - Java Code

 static int fib(int n) {
 int a = 0, b = 1, c;
 if (n == 0)
 return a;
 for (int i = 2; i <= n; i++) {
 c = a + b;
 a = b;
 b = c;
 }
 return b;
 }

CSE 373 23SP 23

Test
Test with Middle Case 2:

n = 9

Fib = 1, 1, 2, 3, 5, 8, 13, 21, 34

Resulting variable values after for loop ends:

a = 21, b = 34, c = 34

Return b = 34

CSE 373 23SP 24

Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem

CSE 373 23SP 25

Question
You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you
climb to the top?

How can we solve this problem in the most optimized way?

CSE 373 23SP 26

Clarify

1. Can n be a non-positive number?
a. No, n must be equal to or greater than 1.

2. Can we use additional data structures?
a. Yes, assume we want the fastest overall runtime.

3. Can we climb the same number of steps in a row?
a. Yes, you can climb in any combination of 1 or 2

steps.

CSE 373 23SP 27

Example
Edge Case 1:

n = 1;

1) Take one step forward.

Output = 1

Edge Case 2:

n = 2;

1) 1 + 1 step

2) 2 steps

Output = 2

Middle Case:

n = 3;

1) 1 + 1 + 1 steps

2) 1 + 2 steps

3) 2 + 1 steps

Output = 3

CSE 373 23SP 28

Approach

Brute Force:

1. Use a recursive function to solve

2. Starting with n and descending down, recursively return the sum
of the combinations it took to get to the last and second last
steps from our current step

3. End our recursion when we hit our base cases n = 1, n = 0

Has O(2n) runtime with O(n) space complexity…unless…dynamic
programming…

CSE 373 23SP 29

Optimize

 Optimized: Use Dynamic Programming to pre-compute the
combinations of steps it takes to get to n and return. Runs in
O(N) runtime.

 Optimized no additional data structure: We compute the value
of our current step with a fixed number of elements (our last
and second last step it took to get to our current step). O(1)

 Note: We are computing a value in a sequence, just like the Fibonacci
problem…

CSE 373 23SP 30

Implement
 Create 3 variables to hold the number of combinations it took to get to

our second last step, our last step, and our current step with respect to
our current step in the sequence when iterating.

 Iterate in a for-loop until we hit term n and add our last and second last
steps’ combinations and set them equal to the number of combinations
to get to our current step.

 When we exit the for-loop, we will have the number of combinations to
get to step n.

CSE 373 23SP 31

Implement - Java Code
 public int climbStairs(int n) {
 int secondLast = 1, last = 1, current = 1;
 if (n == 1)
 return last;
 for (int i = 2; i <= n; i++) {
 current = secondLast + last;
 secondLast = last;
 last = current;
 }
 return last;
 }

CSE 373 23SP 32

Fun Fact

The previous solution runs faster than 100% of leetcode
solutions for the problem…which is the first time I have
ever gotten a 100%...if you haven’t been convinced of
the power of DP yet…you should be now…

CSE 373 23SP 33

Test
Test with Middle Case:

n = 3

3 different ways to get to step 3

Resulting variable values after for loop ends:

secondLast = 2, last = 3, current = 3

Return last = 3

CSE 373 23SP 34

Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
Knapsack Problem

CSE 373 23SP 35

CSE 373 23SP 36

1. Use a DAG to visualize which box can stack on top of which

CSE 373 23SP 37

2. Identify sub problems: Paths in the DAG represent valid stacks

CSE 373 23SP 38

3. Find how subproblems build to larger solution

CSE 373 23SP 39

4. Generalize relationship between subproblems and final solution

CSE 373 23SP 40

5. Implement solving subproblems in correct order

CSE 373 23SP 41

CSE 373 23SP 42

Intro to Dynamic Programming
Fibonacci Problem
Staircase Problem
Box Problem
0/1 Knapsack Problem

CSE 373 23SP 43

0/1 Knapsack Problem

Given a set of objects which have
both a value and a weight (v

i
, w

i
)

what is the maximum value we
can obtain by selecting a subset
of these objects such that the
sum of the weights does not
exceed the knapsacks given
capacity?

Problem Walk Through Video

https://www.youtube.com/watch?v=xOlhR_2QCXY

CSE 373 23SP 44

Brute Force Recursive Solution

public int knapsack(int n, int cap, int[] w, int[] v) {

 if (n == 0 || cap == 0) {

 result = 0;

 } else if (w[n] > cap) {

 result = knapsack(n-1, cap, w, v);

 } else {

 int temp1 = knapsack(n-1, cap, w, v);

 int temp2 = v[n] + knapsack(n-1, cap - w[n-1], w, v);

 result = Math.max(temp1, temp2);

 return result;

 }

}
O(2n)

CSE 373 23SP 45

Recursive Solution is Exponential

45

CSE 373 23SP 46

Memoized DP Solution
public int knapsack(int n, int cap, int[] w, int[] v, int[][] memo) {

 int result = memo[n][cap];

 if (memo[n][cap] == NULL) {

 if (n == 0 || cap == 0) {

 result = 0;

 } else if (w[n] > c) {

 result = knapsack(n-1, cap);

 } else {

 int temp1 = knapsack(n-1, cap);

 int temp2 = v[n] + knapsack(n-1, cap - w[n-1]);

 result = Math.max(temp1, temp2);

 memo[n][cap] = result;

 }

 }

 return result;

}

O(n)

CSE 373 23SP 47

More Examples of Dynamic Programming Problems

● Count the different ways to move through a 6x9 grid
● Given a set of coins, how can we make 27 cents using the smallest number of

coins?
● Given a set of strings, what are the possible ways to construct the string

“potentpot”
● Knapsack problem

Helpful walk through videos:

5 Simple Steps for Solving Dynamic Programming Problems

https://www.youtube.com/watch?v=nLmhmB6NzcM
https://www.youtube.com/watch?v=aPQY__2H3tE

CSE 373 23SP 48

Questions?

CSE 373 23SP 49

That’s all!

