

Lecture 22: Introduction to Sorting II
 CSE 373: Data Structures and Algorithms

Warm Up

What sorting algorithm do the following steps represent. The steps
 are not necessarily consecutive but they are in the correct sequence

```
```

Sort 2

```
```

Sort 2
[2, 27, 18, 12, 14, 43, 8, 5, 41, 32, 48, 10, 37]
[2, 27, 18, 12, 14, 43, 8, 5, 41, 32, 48, 10, 37]
[2, 27, 12, 18, 14, 43, 8, 5, 41, 32, 48, 10, 37]
[2, 27, 12, 18, 14, 43, 8, 5, 41, 32, 48, 10, 37]
[2, 8, 12, 14, 18, 27, 43, 5, 41, 32, 48, 10, 37]
[2, 8, 12, 14, 18, 27, 43, 5, 41, 32, 48, 10, 37]
[2, 8, 12, 14, 18, 27, 43, 5, 10, 32, 37, 41, 48]

```
```

[2, 8, 12, 14, 18, 27, 43, 5, 10, 32, 37, 41, 48]

```
```


Announcements

Final Exam Friday May 26th in class
Topics
Classes Week 5 - Week 8

- Heaps
- Graphs
- Graph Modeling
- BFS/DFS
- Topological Sort
- Dijkstra's
- MSTs
- Disjoint Sets
- Sorting Algorithms

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

Divide and Conquer

There's more than one way to divide!

Mergesort

- Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the right.

Quicksort

- Split into two arrays.
- Roughly, elements that are "small" and elements that are "large"
- How to define "small" and "large"? Choose a "pivot" value in the array that will partition the two arrays!

Quick Sort (v1)

Choose a "pivot" element, partition array relative to it!

Quick Sort (v1): Divide Step

Recursive Case:

- Choose a "pivot" element
- Partition: linear scan through array, add smaller elements to one array and larger elements to another
- Recursively partition

Base Case:

- When array hits size 1, stop dividing

Quick Sort (v1): Combine Step

Simply concatenate the arrays that were created earlier!
Partition step already left them in order ${ }^{*}$

Quick Sort (v1)

```
quickSort(list) {
    if (list.length == 1):
        return list
    else:
        pivot = choosePivot(list)
        smallerHalf = quickSort(getSmaller(pivot, list))
        largerHalf = quickSort(getBigger(pivot, list))
        return smallerHalf + pivot + largerHalf
}
```

Worst case runtime? $\quad T(n)=\left\{\begin{array}{cc}1 & \text { if } n \leq 1 \\ T(n-1)+n & \text { otherwise }\end{array}=\Theta\left(n^{2}\right)\right.$
Best case runtime? $\quad T(n)=\left\{\begin{array}{cc}1 & \text { if } n \leq 1 \\ 2 T\left(\frac{n}{2}\right)+n & \text { otherwise }\end{array}=\Theta(n \log n)\right.$
In-practice runtime? Just trust me: $\Theta(n \log n)$ (absurd amount of math to get here)
Stable?
No

In-place? Can be done!

Useful for:

Fast sorting of primitives!
(This is what Java uses for Primitives)

Worst case: Pivot only chops off one value Best case: Pivot divides each array in half

Can we do better?

How to avoid hitting the worst case?

- It all comes down to the pivot. If the pivot divides each array in half, we get better behavior

Here are four options for finding a pivot. What are the tradeoffs?

- Just take the first element
- Take the median of the full array
- Take the median of the first, last, and middle element
- Pick a random element

Strategies for Choosing a Pivot

Just take the first element

- Very fast!
- But has worst case: for example, sorted lists have $\Omega\left(n^{2}\right)$ behavior

Take the median of the full array

- Can actually find the median in $O(n)$ time (google QuickSelect). It's complicated
- O($n \log n$) even in the worst case... but the constant factors are awful. No one does quicksort this way.
Take the median of the first, last, and middle element
Most commonly used
- Makes pivot slightly more content-aware, at least won't select very smallest/largest
- Worst case is still $\Omega\left(n^{2}\right)$, but on real-world data tends to perform well!

Pick a random element

- Get $O(n \log n)$ runtime with probability at least $1-1 / n^{2}$
- No simple worst-case input (e.g. sorted, reverse sorted)

Quick Sort (v2: In-Place)

Select a pivot
Divide

PIVOT?
 -

	0	1	2	1	4	5	6	7	8	9
Move pivot out	6	1	4	9	0	3	5	2	7	8

Bring low and high pointers together, swapping elements if needed

Meeting point is where pivot belongs; swap in. Now recurse on smaller portions of same array!

CSE 373 23SP

Low
\uparrow
High

0	1	2	3	4	5	6	7	8	9
5	1	4	2	0	3	6	9	7	8

INEFFECTIVE SORTS

```
DEFINE HALFHEARTEDMERGESORT(LIST):
    IF LENGIH(LIST) <2:
    RETURN LIST
    PIVOT = INT (LENGTH(LIST)/2)
    A = HALFHEPRTEDMERGESORT (LIST[:PING])
    A = FALFHERRTEDMERGSSORT (LITT[:PNOT])
    // UMMMMM
    RETURN[A,B] // HERE. SORRY
```

DEFINE FASTBOGOSORT(LIST):
// AN OPTINIZED BOGOSOR
// RUNS \mathbb{N} O(NLOGN)
FOR N FROM 1 TO LOG (LENGTH (LIST)):
SHUFFLE(LIST):
ISSORTED (LIST):
RETURN "KERNEL PAGE fault (ERRDR CODE: 2)"

DEFNE JOBINTERMEWQUICKSORT (LIST)
OK SO YOU CHOOSE A PNOT
OK 50 YOU CHOOSE A PNOT
THEN DIVID THE LST IN HALF
FOR EACH HALF:
CHEOK TO SEE IF IT'S SORTED
NO, WAIT TTDOESN'T MATTER
COMPARE EACH EEEMENT TO THE PIVOT
TFE BGGER ONES GO IN A NEW LIST THE EQUAL ONES GO INTO, UH IANG ON LET ME NAME THE USTS

THIS IS UST A

THE NEW ONE IS LISTB
PUTTHE BIG ONES INTO LST
NOW TAKE THE SECOND LIST
CALL IT LIST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
TJUST RECURSIVELY CAUS TSELF
UNTL BOTH
RIGHT?
EMPTY
EMPH, BUT YOU KNOU WAAT I MEAN AM I ALLOWED TO USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(UST):
F ISSORTED (LIST):
REIURN LIST
FOR N FROM 1 TO 10000:
PIVOT = RANDOM (O, LENGTH(LIST))
LIST = UST [PNVT:] + LIST[:PIVOT]
IF ISSORTED (LSST):
RETURN LIST
F ISSORTED (LIST):
REIURN UST: $/$ THIS CAN'T BE HAPPENING
ISSORTED (LIST): //THIS CAN'T BE HAPPEN
RETURN LIST
F ISSORTED (LIST): //COME ON COME ON
RETURN UST
// OH TEEL
//IM GONNA BE IN SO much trouble LST = []
SYSTEM ("SHUTDOWN $-\mathrm{H}+5$ ")
SYSTEM ("RM -RF./")
SYSTEM ("RM-RF ~/*")
SSTEM ("RD /5/Q C:*") /IPORTABMITY RETURN [1, 2, 3, 4, 5]

Heap Sort

1. run Floyd's buildHeap on your data
 2. call removeMin n times

```
public void heapSort(input) {
    E[] heap = buildHeap(input)
    E[] output = new E[n]
    for (n)
        output[i] =
removeMin(heap)
}
```

Worst case runtime?	$\Theta(n \log n)$
Best case runtime?	$\Theta(n)$
In-practice runtime?	$\Theta(n \log n)$
Stable?	No
In-place?	If we get clever...

Principle 3

Selection sort:
After k iterations of the loop, the k smallest elements of the array are (sorted) in indices $0, \ldots, k-1$
Runs in $\Theta\left(n^{2}\right)$ time no matter what

Using data structures

- Speed up our existing ideas

If only we had a data structure that was good at getting the smallest item remaining in our dataset...

- We do!

In Place Heap Sort

0	1	2	3	4	5	6	7	8	9
1	4	2	14	15	18	16	17	20	22

Current Item

In Place Heap Sort


```
```

public void inPlaceHeapSort(input) {

```
```

public void inPlaceHeapSort(input) {
buildHeap(input) // alters original array
buildHeap(input) // alters original array
for (n : input)
for (n : input)
input[n - i - 1] = removeMin(heap)
input[n - i - 1] = removeMin(heap)
}

```
```

}

```
```

Current Item

Complication: final array is reversed! Lots of fixes:

- Run reverse afterwards O(n)
- Use a max heap
- Reverse compare function to emulate max heap

Worst case runtime? $\quad \Theta(n \log n)$
Best case runtime? $\quad \Theta(n)$
In-practice runtime? $\quad \Theta(n \log n)$
Stable? No
In-place?
Yes

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

Bucket Sort (aka Bin Sort)

- If all values are ints known to be in the range of $1-\mathrm{K}$
- Create array of size K and put each element in its proper bucket ("scatter")
- If elements are only ints simply store count of ints in each bucket
- Output results via linear pass through array of buckets ("gather")
$[5,1,3,4,3,2,1,1,5,4,5]$

Bucket Sort with Data

- Instead of using int counts, make buckets of array of lists
- put items into bucket, use insertion sort to sort individual buckets [0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68]

Bucket Sort

```
function bucketSort(array, k) is
    buckets \leftarrow new array of k empty lists
    M}\leftarrow1+\mathrm{ the maximum key value in the array
    for i = 0 to length(array) do
        insert array[i] into buckets[floor(k x array[i] / M)]
    for i = 0 to k do
    nextSort(buckets[i])
    return the concatenation of buckets[0], ...., buckets[k]
```

Worst case runtime?

Best case runtime? $O(n)$
In-practice runtime?

Stable?

In-place?

Useful for:
No
$O(K+n)$ for ints
$\mathrm{O}\left(\mathrm{K}+\mathrm{n}^{2}\right)$ for data if insertion sort is used
$\mathrm{O}(\mathrm{n})$ if $\mathrm{K} \cong \mathrm{n}$, always for ints, and if values are evenly distributed for data

Can be because insertion sort

When range, K , is smaller or not much larger than n (not many duplicates) Not good when K >> N, wasted space

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

Moving away from comparison sorts

So far we've learned about comparison sorts

- work on any comparable object
- have a best case lower bound of Ω (nlogn)

This is because to sort using comparisons requires all elements to be compared against one another

- n runtime to process all values into some ordered structure (tree)
- logn runtime to remove items from structure in sorted order

What if we didn't need to compare each element, what if we built a sort based on inherent knowledge about the ordering of specific data types ie numbers

Specialized Sorts ("Niche Sorts")

Sorting algorithms that only work on data types with ordering already known to computer logic: numbers

- Bucket Sort for ints
- Radix Sort

Radix Sort

- Radix = "the base of a number system"
- We will use "10" as we are comfortable with 10 based systems
- Could use any value, such as 128 for ASCII strings
- Idea
- Bucket sort on one digit at a time
- Only works on sequences of countable data: ints, doubles, stings
- Number of buckets = radix
- Start with least significant digit, do one pass of bucket sort per digit
- Fun fact: invented in 1890 as part of US census

Input: $[170,45,75,90,802,24,2,66]$
ones: $[170,90,802,2,24,45,75,66]$
tens: $[802,2,24,45,66,170,75,90]$
hundreds: $[2,24,45,66,75,90,170,802]$

Example Walk Through Video

Radix Sort

$[478,537,9,721,3,38,143,67] \quad[721,3,143,537,67,478,38,9] \quad[3,9,721,537,38,143,67,478]$

0	
1	721
2	
3	3,143
4	
5	
6	
7	537,67
8	478,38
9	9

$\mathbf{O} \mathbf{O} \mathbf{(\mathbf { n })}$| 0 | 03,09 |
| :--- | :--- |
| 1 | |
| 2 | 721 |
| 3 | 537,38 |
| 4 | 143 |
| 5 | |
| 6 | 67 |
| 7 | 478 |
| 8 | |
| 9 | |

Radix Sort

Worst case runtime?	$O(n)$
Best case runtime?	$O(n)$
In-practice runtime?	$O(n)$
Stable?	Yes
In-place?	No
Useful for:	Sorting ints

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

Sorting: Summary

	Best-Case	Worst-Case	Space	Stable
Selection Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	O(1)	No
Insertion Sort	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(1)$	Yes
Heap Sort	O(nlogn)	$\mathrm{O}(\mathrm{nlogn})$	$\mathrm{O}(\mathrm{n})$	No
In-Place Heap Sort	O(nlogn)	O(nlogn)	$\mathrm{O}(1)$	No
Merge Sort	O(nlogn)	O(nlogn)	$\underset{\text { O(n)* optimized }}{\text { O(nlogn) }}$	Yes
Quick Sort	O(nlogn)	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	No
In-place Quick Sort	O(nlogn)	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(1)$	No
Bucket Sort	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{K}+\mathrm{n})$	Yes
Radix	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	Yes

What does Java do?

- Actually uses a combination of 3 different sorts:
- If objects: use Merge Sort* (stable!)
- If primitives: use Dual Pivot Quick Sort
- If "reasonably short" array of primitives: use Insertion Sort
- Researchers say 48 elements

Key Takeaway: No single sorting algorithm is "the best"!

- Different sorts have different properties in different situations
- The "best sort" is one that is well-suited to your data

What Else is There?

Can we do better than $n \log n$?

- For comparison sorts, NO. A proven lower bound!
- Intuition: n elements to sort, no faster way to find "right place" than log n
- However, niche sorts can do better in specific situations!

Many cool niche sorts beyond the scope of 373 !
Counting Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data ${ }^{T M}$

That's all!

