
 1CSE 373 23SP 

Lecture 22: Introduction to 
Sorting II

CSE 373: Data Structures and 
Algorithms



CSE 373 23SP  2

Warm Up

What sorting algorithm do the following steps represent. The steps 
are not necessarily consecutive but they are in the correct sequence

https://visualgo.net/en/sorting 

[23, 37, 48, 34, 11, 34, 37, 34, 23, 39, 41, 47]

[11, 37, 48, 34, 23, 34, 37, 34, 23, 39, 41, 47]

[11, 23, 24, 34, 48, 34, 37, 34, 44, 39, 41, 47]

[11, 23, 24, 34, 34, 37, 48, 44, 37, 39, 41, 47]

[2, 27, 18, 12, 14, 43, 8, 5, 41, 32, 48, 10, 37]

[2, 27, 12, 18, 14, 43, 8, 5, 41, 32, 48, 10, 37]

[2, 8, 12, 14, 18, 27, 43, 5, 41, 32, 48, 10, 37]

[2, 8, 12, 14, 18, 27, 43, 5, 10, 32, 37, 41, 48]

Sort 1 Sort 2

Slido Event #3138899
https://app.sli.do/event/dpfe
5mrHKsbDYxqz3hBD6R  

https://visualgo.net/en/sorting
https://app.sli.do/event/dpfe5mrHKsbDYxqz3hBD6R
https://app.sli.do/event/dpfe5mrHKsbDYxqz3hBD6R
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Announcements

Final Exam Friday May 26th in class

Topics

Classes Week 5 - Week 8

● Heaps
● Graphs

○ Graph Modeling
○ BFS/DFS
○ Topological Sort
○ Dijkstra’s
○ MSTs

● Disjoint Sets
● Sorting Algorithms
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Intro to Sorting
Selection Sort 
Insertion Sort
Merge Sort 
Quick Sort
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Divide and Conquer

There’s more than one way to divide!

Mergesort
● Split into two arrays. 
● Elements that just happened to be on the left and that happened to be on 

the right.

Quicksort
● Split into two arrays.
● Roughly, elements that are “small” and elements that are “large”
● How to define “small” and “large”? Choose a “pivot” value in the array 

that will partition the two arrays!
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0

8

Quick Sort (v1)
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

0 1 2 3

1 2 6 7

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

1

0

2

0

6

0

7

0

8

0

22

0 1 2 3

1 6 7 55

0

55

0

91

…

…

Conquer

Choose a “pivot” 
element, partition 
array relative to it!

Again, no extra 
conquer step 
needed!

Simply 
concatenate the 
now-sorted arrays! 

PIVOT

0

8

https://www.youtube.com/watch?v=ywWBy6J5gz8 

https://www.youtube.com/watch?v=ywWBy6J5gz8
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0

8

Quick Sort (v1): Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

Recursive Case:
● Choose a “pivot” 

element
● Partition: linear scan 

through array, add 
smaller elements to 
one array and larger 
elements to another

● Recursively partition

PIVOT

Base Case:
● When array hits size 

1, stop dividing

0 1

7 6

0

1

0

2

PIVOT PIVOT

0 1

22 55

0

91

PIVOT PIVOT

0

6

0

7

0

22

0

55
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Quick Sort (v1): Combine Step
Combine

Simply concatenate 
the arrays that were 
created earlier! 
Partition step already 
left them in order ☺

0

8

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91
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Quick Sort (v1)
quickSort(list) {
   if (list.length == 1):
      return list
   else:
      pivot = choosePivot(list)
      smallerHalf = quickSort(getSmaller(pivot, list))
      largerHalf = quickSort(getBigger(pivot, list))
      return smallerHalf + pivot + largerHalf
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

No

Can be done!

 

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

PIVOT

PIVOT

0

6

0

7

 

 

0 1 2 3

1 2 6 7

0 1

6 7

 

 

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

Fast sorting of primitives! 
(This is what Java uses for Primitives)

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(byte[])
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Can we do better?

How to avoid hitting the worst case?
● It all comes down to the pivot. If the pivot divides each array in half, we 

get better behavior

Here are four options for finding a pivot. What are the tradeoffs?
● Just take the first element
● Take the median of the full array
● Take the median of the first, last, and middle element
● Pick a random element
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Strategies for Choosing a Pivot

Most commonly used

Just take the first element
● Very fast!
● But has worst case: for example, sorted lists have Ω(n²) behavior

Take the median of the full array
● Can actually find the median in O(n) time (google QuickSelect). It’s complicated
● O(n log n) even in the worst case… but the constant factors are awful. No one does 

quicksort this way.

Take the median of the first, last, and middle element
● Makes pivot slightly more content-aware, at least won’t select very smallest/largest
● Worst case is still Ω(n²) , but on real-world data tends to perform well!

Pick a random element
● Get O(n log n) runtime with probability at least 1-1/n²
● No simple worst-case input (e.g. sorted, reverse sorted)
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Quick Sort (v2: In-Place) 
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

PIVOT? PIVOT? PIVOT?

Select a pivot

Move pivot out 
of the way

Bring low and high 
pointers together, 
swapping elements 
if needed

Meeting point is 
where pivot 
belongs; swap in. 
Now recurse on 
smaller portions 
of same array!

Divide PIVOT!
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Heap Sort
Bucket Sort
Radix Sort
Sorting Summary
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Heap Sort

1. run Floyd’s buildHeap on your data

2. call removeMin n times

public void heapSort(input) {
   E[] heap = buildHeap(input)
   E[] output = new E[n]
   for (n) 
      output[i] = 
removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

 

 

No

 

https://www.youtube.com/watch?v=Xw2D9aJRBY4

If we get 
clever…

https://www.youtube.com/watch?v=Xw2D9aJRBY4
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Principle 3

Selection sort:
After k iterations of the loop, the k smallest elements of the array are (sorted) in 
indices 0, … , k-1
Runs in Θ(n²) time no matter what

Using data structures
● Speed up our existing ideas

If only we had a data structure that was good at getting the smallest item 
remaining in our dataset… 
● We do!
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In Place Heap Sort
0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)
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In Place Heap Sort

public void inPlaceHeapSort(input) {
   buildHeap(input) // alters original array
   for (n : input) 
      input[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

 

 

No

Yes

 

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
● Run reverse afterwards O(n)
● Use a max heap
● Reverse compare function to emulate max heap
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Heap Sort
Bucket Sort
Radix Sort
Sorting Summary
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Bucket Sort (aka Bin Sort)

● If all values are ints known to be in the range of 1 - K
● Create array of size K and put each element in its proper bucket 

(“scatter”)
○ If elements are only ints simply store count of ints in each bucket

● Output results via linear pass through array of buckets (“gather”)

[5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5]
1 3

2 1

3 2

4 4

5 3

[1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5]

O(n)
O(K + n)

Total Runtime: O(K + n)
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worst: O(K + n2)

best: O(K)

Bucket Sort with Data

● Instead of using int counts, make buckets of array of lists
● put items into bucket, use insertion sort to sort individual buckets

[0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68]

0

1

2

3

4

5

6

7

8

9
[0.12, 0.17, 0.21, 0.23, 0.26, 0.39, 
0.68, 0.72, 0.78, 0.94]

O(n)

O(K + n)

0.78

0.17

0.39

0.26

0.72

0.94

0.21

0.12

0.23

0.68

0

1

2

3

4

5

6

7

8

9

0.78

0.17

0.39

0.26

0.72

0.94

0.21

0.12

0.23

0.68

Bucket Sort Example Video 

https://www.youtube.com/watch?v=VuXbEb5ywrU
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Bucket Sort
function bucketSort(array, k) is
    buckets ← new array of k empty lists
    M ← 1 + the maximum key value in the array
    for i = 0 to length(array) do
        insert array[i] into buckets[floor(k × array[i] / M)]
    for i = 0 to k do  
        nextSort(buckets[i])
    return the concatenation of buckets[0], ...., buckets[k]

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

O(K + n) for ints
O(K + n2) for data if insertion sort is used

O(n) 

O(n) if K ≅ n, always for ints, and if values are evenly distributed for data

Can be because insertion sort

No

When range, K, is smaller or not much larger than n (not many duplicates)
Not good when K >> N, wasted space
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Heap Sort
Bucket Sort
Radix Sort
Sorting Summary
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Moving away from comparison sorts

So far we’ve learned about comparison sorts

● work on any comparable object
● have a best case lower bound of Ω(nlogn)

This is because to sort using comparisons requires all elements to be compared 
against one another

● n runtime to process all values into some ordered structure (tree)
● logn runtime to remove items from structure in sorted order

What if we didn’t need to compare each element, what if we built a sort based 
on inherent knowledge about the ordering of specific data types ie numbers
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Specialized Sorts (“Niche Sorts”)

Sorting algorithms that only work on data types with ordering 
already known to computer logic: numbers

- Bucket Sort for ints
- Radix Sort
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Radix Sort

● Radix = “the base of a number system”
○ We will use “10” as we are comfortable with 10 based systems
○ Could use any value, such as 128 for ASCII strings

● Idea
○ Bucket sort on one digit at a time

■ Only works on sequences of countable data: ints, doubles, stings

○ Number of buckets = radix
○ Start with least significant digit, do one pass of bucket sort per digit

● Fun fact: invented in 1890 as part of US census

[170, 45, 75, 90, 802, 24, 2, 66]

[170, 90, 802, 2, 24, 45, 75, 66]

[802, 2, 24, 45, 66, 170, 75, 90]

[2, 24, 45, 66, 75, 90, 170, 802]

Input:

ones:

tens:

hundreds:

Example Walk Through Video 

https://www.youtube.com/watch?v=nu4gDuFabIM
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O(n)O(n)

Radix Sort

[478, 537, 9, 721, 3, 38, 143, 67]

0

1 721

2

3 3, 143

4

5

6

7 537, 67

8 478, 38

9 9

0 03, 09

1

2 721

3 537, 38

4 143

5

6 67

7 478

8

9

[721, 3, 143, 537, 67, 478, 38, 9] [3, 9, 721, 537, 38, 143, 67, 478]

0 003, 009, 038, 067

1 143

2

3

4 478

5

6 537

7 721

8

9

[3, 9, 38, 67, 143, 478, 537, 721]

O(n)
O(n) O(n)

O(n)
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Radix Sort

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

O(n)

O(n) 

O(n) 

Yes

No

Sorting ints
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Heap Sort
Bucket Sort
Radix Sort
Sorting Summary
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Sorting: Summary

Best-Case Worst-Case Space Stable

Selection Sort O(n2) O(n2) O(1) No

Insertion Sort O(n) O(n2) O(1) Yes

Heap Sort O(nlogn) O(nlogn) O(n) No

In-Place Heap Sort O(nlogn) O(nlogn) O(1) No

Merge Sort O(nlogn) O(nlogn) O(nlogn)
O(n)* optimized

Yes

Quick Sort O(nlogn) O(n2) O(n) No

In-place Quick Sort O(nlogn) O(n2) O(1) No

Bucket Sort O(n) O(n2) O(K+n) Yes

Radix O(n) O(n) O(n) Yes

What does Java do?
● Actually uses a combination of 3 

different sorts:
○ If objects: use Merge Sort* 

(stable!)
○ If primitives: use Dual Pivot 

Quick Sort
○ If “reasonably short” array of 

primitives: use Insertion Sort
■ Researchers say 48 elements

Key Takeaway: No single 
sorting algorithm is “the best”!
● Different sorts have different 

properties in different situations
● The “best sort” is one that is 

well-suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different
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What Else is There?

Can we do better than n log n?
● For comparison sorts, NO. A proven lower bound!

○ Intuition: n elements to sort, no faster way to find “right place” than log n
● However, niche sorts can do better in specific situations!

Many cool niche sorts beyond the scope of 373!
Counting Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/External_sorting
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Questions?
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That’s all!


