
 1CSE 373 23SP

Lecture 22: Introduction to
Sorting II

CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

What sorting algorithm do the following steps represent. The steps
are not necessarily consecutive but they are in the correct sequence

https://visualgo.net/en/sorting

[23, 37, 48, 34, 11, 34, 37, 34, 23, 39, 41, 47]

[11, 37, 48, 34, 23, 34, 37, 34, 23, 39, 41, 47]

[11, 23, 24, 34, 48, 34, 37, 34, 44, 39, 41, 47]

[11, 23, 24, 34, 34, 37, 48, 44, 37, 39, 41, 47]

[2, 27, 18, 12, 14, 43, 8, 5, 41, 32, 48, 10, 37]

[2, 27, 12, 18, 14, 43, 8, 5, 41, 32, 48, 10, 37]

[2, 8, 12, 14, 18, 27, 43, 5, 41, 32, 48, 10, 37]

[2, 8, 12, 14, 18, 27, 43, 5, 10, 32, 37, 41, 48]

Sort 1 Sort 2

Slido Event #3138899
https://app.sli.do/event/dpfe
5mrHKsbDYxqz3hBD6R

https://visualgo.net/en/sorting
https://app.sli.do/event/dpfe5mrHKsbDYxqz3hBD6R
https://app.sli.do/event/dpfe5mrHKsbDYxqz3hBD6R

CSE 373 23SP 3

Announcements

Final Exam Friday May 26th in class

Topics

Classes Week 5 - Week 8

● Heaps
● Graphs

○ Graph Modeling
○ BFS/DFS
○ Topological Sort
○ Dijkstra’s
○ MSTs

● Disjoint Sets
● Sorting Algorithms

CSE 373 23SP 4

Intro to Sorting
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

CSE 373 23SP 5

Divide and Conquer

There’s more than one way to divide!

Mergesort
● Split into two arrays.
● Elements that just happened to be on the left and that happened to be on

the right.

Quicksort
● Split into two arrays.
● Roughly, elements that are “small” and elements that are “large”
● How to define “small” and “large”? Choose a “pivot” value in the array

that will partition the two arrays!

CSE 373 23SP 6

0

8

Quick Sort (v1)
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

0 1 2 3

1 2 6 7

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

1

0

2

0

6

0

7

0

8

0

22

0 1 2 3

1 6 7 55

0

55

0

91

…

…

Conquer

Choose a “pivot”
element, partition
array relative to it!

Again, no extra
conquer step
needed!

Simply
concatenate the
now-sorted arrays!

PIVOT

0

8

https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ywWBy6J5gz8

CSE 373 23SP 7

0

8

Quick Sort (v1): Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6

0 1 2

91 22 55

Recursive Case:
● Choose a “pivot”

element
● Partition: linear scan

through array, add
smaller elements to
one array and larger
elements to another

● Recursively partition

PIVOT

Base Case:
● When array hits size

1, stop dividing

0 1

7 6

0

1

0

2

PIVOT PIVOT

0 1

22 55

0

91

PIVOT PIVOT

0

6

0

7

0

22

0

55

CSE 373 23SP 8

Quick Sort (v1): Combine Step
Combine

Simply concatenate
the arrays that were
created earlier!
Partition step already
left them in order ☺

0

8

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91

CSE 373 23SP 9

Quick Sort (v1)
quickSort(list) {
 if (list.length == 1):
 return list
 else:
 pivot = choosePivot(list)
 smallerHalf = quickSort(getSmaller(pivot, list))
 largerHalf = quickSort(getBigger(pivot, list))
 return smallerHalf + pivot + largerHalf
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

No

Can be done!

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

PIVOT

PIVOT

0

6

0

7

0 1 2 3

1 2 6 7

0 1

6 7

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

Fast sorting of primitives!
(This is what Java uses for Primitives)

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(byte[])

CSE 373 23SP 10

Can we do better?

How to avoid hitting the worst case?
● It all comes down to the pivot. If the pivot divides each array in half, we

get better behavior

Here are four options for finding a pivot. What are the tradeoffs?
● Just take the first element
● Take the median of the full array
● Take the median of the first, last, and middle element
● Pick a random element

CSE 373 23SP 11

Strategies for Choosing a Pivot

Most commonly used

Just take the first element
● Very fast!
● But has worst case: for example, sorted lists have Ω(n²) behavior

Take the median of the full array
● Can actually find the median in O(n) time (google QuickSelect). It’s complicated
● O(n log n) even in the worst case… but the constant factors are awful. No one does

quicksort this way.

Take the median of the first, last, and middle element
● Makes pivot slightly more content-aware, at least won’t select very smallest/largest
● Worst case is still Ω(n²) , but on real-world data tends to perform well!

Pick a random element
● Get O(n log n) runtime with probability at least 1-1/n²
● No simple worst-case input (e.g. sorted, reverse sorted)

CSE 373 23SP 12

Quick Sort (v2: In-Place)
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

PIVOT? PIVOT? PIVOT?

Select a pivot

Move pivot out
of the way

Bring low and high
pointers together,
swapping elements
if needed

Meeting point is
where pivot
belongs; swap in.
Now recurse on
smaller portions
of same array!

Divide PIVOT!

CSE 373 23SP 13

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

CSE 373 23SP 14

Heap Sort

1. run Floyd’s buildHeap on your data

2. call removeMin n times

public void heapSort(input) {
 E[] heap = buildHeap(input)
 E[] output = new E[n]
 for (n)
 output[i] =
removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

https://www.youtube.com/watch?v=Xw2D9aJRBY4

If we get
clever…

https://www.youtube.com/watch?v=Xw2D9aJRBY4

CSE 373 23SP 15

Principle 3

Selection sort:
After k iterations of the loop, the k smallest elements of the array are (sorted) in
indices 0, … , k-1
Runs in Θ(n²) time no matter what

Using data structures
● Speed up our existing ideas

If only we had a data structure that was good at getting the smallest item
remaining in our dataset…
● We do!

CSE 373 23SP 16

In Place Heap Sort
0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

CSE 373 23SP 17

In Place Heap Sort

public void inPlaceHeapSort(input) {
 buildHeap(input) // alters original array
 for (n : input)
 input[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
● Run reverse afterwards O(n)
● Use a max heap
● Reverse compare function to emulate max heap

CSE 373 23SP 18

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

CSE 373 23SP 19

Bucket Sort (aka Bin Sort)

● If all values are ints known to be in the range of 1 - K
● Create array of size K and put each element in its proper bucket

(“scatter”)
○ If elements are only ints simply store count of ints in each bucket

● Output results via linear pass through array of buckets (“gather”)

[5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5]
1 3

2 1

3 2

4 4

5 3

[1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5]

O(n)
O(K + n)

Total Runtime: O(K + n)

CSE 373 23SP 20

worst: O(K + n2)

best: O(K)

Bucket Sort with Data

● Instead of using int counts, make buckets of array of lists
● put items into bucket, use insertion sort to sort individual buckets

[0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68]

0

1

2

3

4

5

6

7

8

9
[0.12, 0.17, 0.21, 0.23, 0.26, 0.39,
0.68, 0.72, 0.78, 0.94]

O(n)

O(K + n)

0.78

0.17

0.39

0.26

0.72

0.94

0.21

0.12

0.23

0.68

0

1

2

3

4

5

6

7

8

9

0.78

0.17

0.39

0.26

0.72

0.94

0.21

0.12

0.23

0.68

Bucket Sort Example Video

https://www.youtube.com/watch?v=VuXbEb5ywrU

CSE 373 23SP 21

Bucket Sort
function bucketSort(array, k) is
 buckets ← new array of k empty lists
 M ← 1 + the maximum key value in the array
 for i = 0 to length(array) do
 insert array[i] into buckets[floor(k × array[i] / M)]
 for i = 0 to k do
 nextSort(buckets[i])
 return the concatenation of buckets[0],, buckets[k]

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

O(K + n) for ints
O(K + n2) for data if insertion sort is used

O(n)

O(n) if K ≅ n, always for ints, and if values are evenly distributed for data

Can be because insertion sort

No

When range, K, is smaller or not much larger than n (not many duplicates)
Not good when K >> N, wasted space

CSE 373 23SP 22

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

CSE 373 23SP 23

Moving away from comparison sorts

So far we’ve learned about comparison sorts

● work on any comparable object
● have a best case lower bound of Ω(nlogn)

This is because to sort using comparisons requires all elements to be compared
against one another

● n runtime to process all values into some ordered structure (tree)
● logn runtime to remove items from structure in sorted order

What if we didn’t need to compare each element, what if we built a sort based
on inherent knowledge about the ordering of specific data types ie numbers

CSE 373 23SP 24

Specialized Sorts (“Niche Sorts”)

Sorting algorithms that only work on data types with ordering
already known to computer logic: numbers

- Bucket Sort for ints
- Radix Sort

CSE 373 23SP 25

Radix Sort

● Radix = “the base of a number system”
○ We will use “10” as we are comfortable with 10 based systems
○ Could use any value, such as 128 for ASCII strings

● Idea
○ Bucket sort on one digit at a time

■ Only works on sequences of countable data: ints, doubles, stings

○ Number of buckets = radix
○ Start with least significant digit, do one pass of bucket sort per digit

● Fun fact: invented in 1890 as part of US census

[170, 45, 75, 90, 802, 24, 2, 66]

[170, 90, 802, 2, 24, 45, 75, 66]

[802, 2, 24, 45, 66, 170, 75, 90]

[2, 24, 45, 66, 75, 90, 170, 802]

Input:

ones:

tens:

hundreds:

Example Walk Through Video

https://www.youtube.com/watch?v=nu4gDuFabIM

CSE 373 23SP 26

O(n)O(n)

Radix Sort

[478, 537, 9, 721, 3, 38, 143, 67]

0

1 721

2

3 3, 143

4

5

6

7 537, 67

8 478, 38

9 9

0 03, 09

1

2 721

3 537, 38

4 143

5

6 67

7 478

8

9

[721, 3, 143, 537, 67, 478, 38, 9] [3, 9, 721, 537, 38, 143, 67, 478]

0 003, 009, 038, 067

1 143

2

3

4 478

5

6 537

7 721

8

9

[3, 9, 38, 67, 143, 478, 537, 721]

O(n)
O(n) O(n)

O(n)

CSE 373 23SP 27

Radix Sort

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Useful for:

O(n)

O(n)

O(n)

Yes

No

Sorting ints

CSE 373 23SP 28

Heap Sort
Bucket Sort
Radix Sort
Sorting Summary

CSE 373 23SP 29

Sorting: Summary

Best-Case Worst-Case Space Stable

Selection Sort O(n2) O(n2) O(1) No

Insertion Sort O(n) O(n2) O(1) Yes

Heap Sort O(nlogn) O(nlogn) O(n) No

In-Place Heap Sort O(nlogn) O(nlogn) O(1) No

Merge Sort O(nlogn) O(nlogn) O(nlogn)
O(n)* optimized

Yes

Quick Sort O(nlogn) O(n2) O(n) No

In-place Quick Sort O(nlogn) O(n2) O(1) No

Bucket Sort O(n) O(n2) O(K+n) Yes

Radix O(n) O(n) O(n) Yes

What does Java do?
● Actually uses a combination of 3

different sorts:
○ If objects: use Merge Sort*

(stable!)
○ If primitives: use Dual Pivot

Quick Sort
○ If “reasonably short” array of

primitives: use Insertion Sort
■ Researchers say 48 elements

Key Takeaway: No single
sorting algorithm is “the best”!
● Different sorts have different

properties in different situations
● The “best sort” is one that is

well-suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different

CSE 373 23SP 30

What Else is There?

Can we do better than n log n?
● For comparison sorts, NO. A proven lower bound!

○ Intuition: n elements to sort, no faster way to find “right place” than log n
● However, niche sorts can do better in specific situations!

Many cool niche sorts beyond the scope of 373!
Counting Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/External_sorting

CSE 373 23SP 31

Questions?

CSE 373 23SP 32

That’s all!

