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Algorithms
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Practice
Given the following disjoint-set what would be the result of the 
following calls on union if we always add the smaller tree (fewer 
nodes) into the larger tree (more nodes). Draw the forest at each 
stage with corresponding ranks for each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls 
on union if we add the “union-by-weight” optimization. Draw the forest at 
each stage with corresponding ranks for each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls 
on union if we add the “union-by-weight” optimization. Draw the forest at 
each stage with corresponding ranks for each tree.
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Practice
Given the following disjoint-set what would be the result of the following calls 
on union if we add the “union-by-weight” optimization. Draw the forest at 
each stage with corresponding ranks for each tree.
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 Does this improve the worst case runtimes?

 findSet is more likely to be O(log(n)) than O(n)

Practice
Given the following disjoint-set what would be the result of the following calls 
on union if we add the “union-by-weight” optimization. Draw the forest at 
each stage with corresponding ranks for each tree.
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Announcements

● P4 releases today
○ Due Wednesday 6/7 (finals week)

● EX3 regrade requests due Sunday
● EX5 due Monday
● EX6 releases Monday
● Sorry about lecture audio issues…

○ We are posting the lectures from last year 
○ I added a video walk through of Bellman Ford (missing from last year)
○ I recorded a shorter video just going over the Dijkstra’s implementation 

slides to help you on P4
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Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation
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New ADT
Set ADT

create(x) - creates a new set with a single 
member, x

Count of Elements

state

behavior

Set of elements
- Elements must be unique!
- No required order

add(x) - adds x into set if it is unique, 
otherwise add is ignored
remove(x) – removes x from set

size() – returns current number of 
elements in set

Disjoint-Set ADT

makeSet(x) – creates a new set within the disjoint set where the only 
member is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing element x, returns 
representative of that set
union(x, y) – looks up set containing x and set containing y, combines 
two sets into one. Picks new representative for resulting set

D

B

C

A
D

C

F

B

A

G
H
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Implementation

TreeDisjointSet<E>

makeSet(x)-create a new 
tree of size 1 and add to 
our forest

state

behavior

Set<TreeSet> forest

findSet(x)-locates node with 
x and moves up tree to find 
root

union(x, y)-append tree 
with y as a child of tree 
with x 

Disjoint-Set ADT

makeSet(x) – creates a new set within 
the disjoint set where the only member 
is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique 

across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing 
element x, returns representative of 
that set

union(x, y) – looks up set containing x 
and set containing y, combines two sets 
into one. Picks new representative for 
resulting set

Map<NodeValues, 
NodeLocations> 
nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior

SetNode overallRoot

add(x)

remove(x, y)
getRep()- returns data of 
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

updateParent(x)

SetNode<E> parent
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Implementation

Nishu

Santino

Brian

Rahul

TreeDisjointSet<E>

TreeSet<E>

SetNode<E>

1

4

Kevin

Aileen

Keanu

Sherdil

Leona

9

Disjoint Sets are built as a collection of three objects
The TreeDisjointSet<E> is the top level object with two fields:

- Set<TreeSet> forest
- Map with node references

Each TreeSet<E> is a collection of SetNodes<E>
Each SetNode<E> can have an unlimited number of children, but only 
one parent. Nodes store parents instead of children.

Set<TreeSet> forest =

Map<E, SetNode<E>> nodeInventory =
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Implement makeSet(x)

Worst case runtime?
O(1) 

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root

union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

 makeSet(0)

 makeSet(1)

 makeSet(2)

 makeSet(3)

 makeSet(4)

 makeSet(5)
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Implement find(X)

Key Idea: Jump to the node given. Travel upward to 
parent until parent field is null, nodes with null parents 
are roots and their data will act as the representative for 
the set

How do we jump to a node quickly?
● Store a map from value to its node (Omitted in future slides)

Runtime
● jump to node O(1)
● travel up to root

○ based on height of TreeSet
○ Worst case: O(n) if TreeSet is degenerate Tree

find(Santino) -> Aileen
find(Ken) -> Joyce
find(Santino) != find(Ken)
find(Santino) == find(Aileen)

find(Ken):

  jump to Ken node

  travel upward until root Joyce

  return root “Joyce”
Aileen

Santino

Paul

Joyce 

KenSam

Alex

Sam

Alex

Paul
…Map<E, SetNode<E>> nodeInventory =
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Implement union(x, y)
Key idea: easy to simply rearrange pointers to 
union entire trees together!
● it doesn’t matter what the order of the trees are, 

only that all the nodes from one tree are connected 
to the other tree

union(Ken, Santino):

  rootK = find(Ken) //Joyce

  rootS = find(Santino) //Aileen

  set rootK to point to rootS

Aileen

Santino

Paul

Joyce

KenSam

Alex

RESULT:

Aileen

Santino

Paul

Joyce

KenSam

Alex
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Union: Why bother with the second root?

Key idea: keeping the height of each tree short will help minimize runtime for 
future find(x)
● Pointing directly to the individual element instead of the root can grow the tree height

union(Ken, Santino):

  rootK = find(Ken)

  rootS = find(Santino)

  set rootK to point to rootS

union(Ken, Santino):

  rootK = find(Ken)

  set rootK to point to Santino

Aileen

Santino

Paul
Joyce

KenSam

Alex

Why not just use:

Aileen

Santino

Paul

Joyce

KenSam

Alex

Height = 3

Height = 4
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union(A, B):

  rootA = find(A)

  rootB = find(B)

  set rootA to point to rootB

find(A):

  jump to A node

  travel upward until root

  return ID

A series of calls to union that would create a worst-case runtime 
for find on these Disjoint Sets:

A

B

C

D

Union runtime

union(A, B)

B

A

C

D

union(B, C)

union(C, D)

find(A) n runtime :(
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Analyzing the union worst case

● How did we get a degenerate tree?
○ Even though pointing a root to a root usually helps with this, we can still get a 

degenerate tree if we put the root of a large tree under the root of a small tree.
○ Instead of always putting rootA under rootB what if we could ensure the smaller tree 

went under the larger tree?

B

A

C

D

union(C, D) B

A

C

D

What currently 
happens

What would help avoid degenerate tree



CSE 373 23SP  18

Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation
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WeightedUnion

Goal: Always pick the smaller tree to go 
under the larger tree

Implementation: Store the number of nodes 
(or “weight”) of each tree in the root
● Constant-time lookup instead of having to traverse the 

entire tree to count

union(A, B):

  rootA = find(A)

  rootB = find(B)

  put lighter root under heavier root

A

union(A, B)

union(B, C)

union(C, D)

find(A)

weight: 1

B
weight: 1

C
weight: 1

D
weight: 1

234

O(1) runtime :)
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WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

N H

1 0



CSE 373 23SP  21

WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1

N H

1 0

2 1
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WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1

2

3

N H

1 0

2 1

4 ?
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WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1 2

3

N H

1 0

2 1

4 2
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WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible
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N H

1 0

2 1

4 2

8 ?
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WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1 2

3

N H

1 0

2 1

4 2

8 3
4

5 6

7
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Consider the worst case where the tree height grows as fast as 
possible
Worst case tree height is O(log N)

WeightedUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13
14

15
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Runtime so far…

This is pretty good! But there’s one final optimization we can make: 

path compression

Worst Case Runtime

makeSet(value) O(1)
find(value) O(log n)
union(x, y) O(log n)

kruskalMST(G graph)

  DisjointSets<V> msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST);

O(ElogV)
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Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation
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● Thus far, the modifications we’ve studied are designed to 
preserve invariants
○ E.g. Performing rotations to preserve the AVL invariant
○ We rely on those invariants always being true so every call is fast

● Path compression is entirely different: we are modifying the tree 
structure to improve future performance
○ Not adhering to a specific invariant
○ The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains
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Path Compression: Idea

This is the worst-case topology if we use WeightedUnion

Key Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just constant time 

work to point to root too)
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Path Compression: Idea
This is the worst-case topology if we use WeightedUnion

Key Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just constant time 

work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

Perform Path Compression on every find(), so future calls to find() are faster!
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Path Compression: Details and Runtime
Run path compression on every find()!
○ Including the find()s that are invoked as part of a union()

Understanding the performance of M>1 operations requires 
amortized analysis
○ Effectively averaging out rare events over many common ones
○ Typically used for “In-Practice” case

■ E.g. when we assume an array doesn’t resize “in practice”, we can do that because the rare resizing calls are 
amortized over many faster calls

○ In 373 we don’t go in-depth on amortized analysis

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15
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Path Compression: Runtime

M find()s on WeightedUnion requires takes O(M log N)

… but M find()s using the WeightedUnion and  PathCompression 
optimizations takes O(M log*N)!
○ log*n is the “iterated log”: the number of times you need to apply log to n before it’s 

<= 1
○ Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Path Compression: Runtime

Path compression results in find()s and union()s that are very 
very close to (amortized) constant time
○ log* is less than 5 for any realistic input
○ If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)!  🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the 
known universe is 2256ish
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Kruskal’s Runtime

Find and union are log|V| in worst case, but amortized constant “in practice”

Either way, dominated by time to sort the edges ☹
● For an MST to exist, E can’t be smaller than V, so assume it dominates
● Note: some people write |E|log|V|, which is the same (within a constant factor)

kruskalMST(G graph)

  DisjointSets<V> msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)
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Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation
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Using Arrays for Up-Trees
Since every node can have at most one parent, 
what if we use an array to store the parent 
relationships?

Proposal: each node corresponds to an index, 
where we store the index of the parent (or –1 
for roots). Use the root index as the 
representative ID!

Just like with heaps, tree picture still 
conceptually correct, but exists in our minds!

Aileen

Santino

Paul

Joyce

KenSam

Alex

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken
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Using Arrays: Find
Initial jump to element still done with 
extra Map

But traversing up the tree can be done 
purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen

Santino

Paul

Joyce

KenSam

Alex

Alex

Aileen

Sam
…

find(A):

  index = jump to A node’s index

  while array[index] > 0:

    index = array[index]

  path compression

  return index

1

2

find(Alex)

1

2

= 0

Can still do path compression by setting all indices 
along the way to the root index!

0

3

3
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Using Arrays: Union

For WeightedUnion, we need to store 
the number of nodes in each tree (the 
weight)

Instead of just storing -1 to indicate a 
root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen

Santino

Joyce

KenSam

Alex

union(A, B):

  rootA = find(A)

  rootB = find(B)

  use -1 * array[rootA] and -1 * 

array[rootB] to determine weights

  put lighter root under heavier root

weight 4
weight 2

union(Ken, Santino)

Paul

weight 1

Aileen

Santino

Paul

Joyce

KenSam

Alex
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Using Arrays: Union

For WeightedUnion, we need to store 
the number of nodes in each tree (the 
weight)

Instead of just storing -1 to indicate a 
root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

union(A, B):

  rootA = find(A)

  rootB = find(B)

  use -1 * array[rootA] and -1 * 

array[rootB] to determine weights

  put lighter root under heavier root

-6 0

Aileen (2)

Santino

Joyce

KenSam

Alex

weight 6

Paul

weight 1

Aileen

union(Ken, Santino)



CSE 373 23SP  41

Array Implementation Practice

1

6

3

weight = 1

4

2

105 7

0

98

11

15

13

weight = 8

14

12

1716

18

weight = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fill in the array representing this DisJoint set. Remember to Store (weight * -1) - 1 as the “parent” of the root nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -10 1 2 2 2 1 6 7 7 6 -8 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32
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Array Implementation Practice

42

3

0

weight = 1

4

111

5

2

13

12

weight = 8

109

1415 8

weight = 6 weight = 2

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 -6 3 -1 -2 6 12 13 13 0 13 -8 12 12 12

Update the Array with the correct values after a call of union(14, 11) using WeightedUnion and PathCompression



CSE 373 23SP  43

Array Implementation Practice

43

3

0

weight = 1

4

11

1

5

2

13

12

weight = 14

109 14

15 8

weight = 2

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 13 3 -1 -2 6 12 13 13 13 13 -14 13 12 12

Update the Array with the correct values after a call of union(14, 11) using WeightedUnion and PathCompression
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Questions?
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That’s all!
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Appendix


