
 1CSE 373 23SP

Lecture 20: Disjoint Sets CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Practice
Given the following disjoint-set what would be the result of the
following calls on union if we always add the smaller tree (fewer
nodes) into the larger tree (more nodes). Draw the forest at each
stage with corresponding ranks for each tree.

6

4

5

0 3

1

2 8

10

12

9 11

7

13

 union(2, 13)

 union(4, 12)

 union(2, 8)

Slido Event #1836731
https://app.sli.do/event/nVu
gNZKCMvb4k9y88C1QaU

https://app.sli.do/event/nVugNZKCMvb4k9y88C1QaU
https://app.sli.do/event/nVugNZKCMvb4k9y88C1QaU

CSE 373 23SP 3

Practice
Given the following disjoint-set what would be the result of the following calls
on union if we add the “union-by-weight” optimization. Draw the forest at
each stage with corresponding ranks for each tree.

6

4

5

0 3

1

2 8

10

12

9 11

7

13

 union(2, 13)

CSE 373 23SP 4

Practice
Given the following disjoint-set what would be the result of the following calls
on union if we add the “union-by-weight” optimization. Draw the forest at
each stage with corresponding ranks for each tree.

6

4

5

0 3

1

2

8

10

12

9 11

7

13

 union(2, 13)

 union(4, 12)

CSE 373 23SP 5

Practice
Given the following disjoint-set what would be the result of the following calls
on union if we add the “union-by-weight” optimization. Draw the forest at
each stage with corresponding ranks for each tree.

6

4

5

0 3

1

2
8

10

12

9 11

7

13

 union(2, 13)

 union(4, 12)

 union(2, 8)

CSE 373 23SP 6

 Does this improve the worst case runtimes?

 findSet is more likely to be O(log(n)) than O(n)

Practice
Given the following disjoint-set what would be the result of the following calls
on union if we add the “union-by-weight” optimization. Draw the forest at
each stage with corresponding ranks for each tree.

8

10

12

9 11

 union(2, 13)

 union(4, 12)

 union(2, 8)

6

4

5

0 3

1 2

7

13

CSE 373 23SP 7

Announcements

● P4 releases today
○ Due Wednesday 6/7 (finals week)

● EX3 regrade requests due Sunday
● EX5 due Monday
● EX6 releases Monday
● Sorry about lecture audio issues…

○ We are posting the lectures from last year
○ I added a video walk through of Bellman Ford (missing from last year)
○ I recorded a shorter video just going over the Dijkstra’s implementation

slides to help you on P4

CSE 373 23SP 8

Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation

CSE 373 23SP 9

New ADT
Set ADT

create(x) - creates a new set with a single
member, x

Count of Elements

state

behavior

Set of elements
- Elements must be unique!
- No required order

add(x) - adds x into set if it is unique,
otherwise add is ignored
remove(x) – removes x from set

size() – returns current number of
elements in set

Disjoint-Set ADT

makeSet(x) – creates a new set within the disjoint set where the only
member is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing element x, returns
representative of that set
union(x, y) – looks up set containing x and set containing y, combines
two sets into one. Picks new representative for resulting set

D

B

C

A
D

C

F

B

A

G
H

CSE 373 23SP 10

Implementation

TreeDisjointSet<E>

makeSet(x)-create a new
tree of size 1 and add to
our forest

state

behavior

Set<TreeSet> forest

findSet(x)-locates node with
x and moves up tree to find
root

union(x, y)-append tree
with y as a child of tree
with x

Disjoint-Set ADT

makeSet(x) – creates a new set within
the disjoint set where the only member
is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique

across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing
element x, returns representative of
that set

union(x, y) – looks up set containing x
and set containing y, combines two sets
into one. Picks new representative for
resulting set

Map<NodeValues,
NodeLocations>
nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior

SetNode overallRoot

add(x)

remove(x, y)
getRep()- returns data of
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

updateParent(x)

SetNode<E> parent

CSE 373 23SP 11

Implementation

Nishu

Santino

Brian

Rahul

TreeDisjointSet<E>

TreeSet<E>

SetNode<E>

1

4

Kevin

Aileen

Keanu

Sherdil

Leona

9

Disjoint Sets are built as a collection of three objects
The TreeDisjointSet<E> is the top level object with two fields:

- Set<TreeSet> forest
- Map with node references

Each TreeSet<E> is a collection of SetNodes<E>
Each SetNode<E> can have an unlimited number of children, but only
one parent. Nodes store parents instead of children.

Set<TreeSet> forest =

Map<E, SetNode<E>> nodeInventory =

CSE 373 23SP 12

Implement makeSet(x)

Worst case runtime?
O(1)

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root

union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

 makeSet(0)

 makeSet(1)

 makeSet(2)

 makeSet(3)

 makeSet(4)

 makeSet(5)

CSE 373 23SP 13

Implement find(X)

Key Idea: Jump to the node given. Travel upward to
parent until parent field is null, nodes with null parents
are roots and their data will act as the representative for
the set

How do we jump to a node quickly?
● Store a map from value to its node (Omitted in future slides)

Runtime
● jump to node O(1)
● travel up to root

○ based on height of TreeSet
○ Worst case: O(n) if TreeSet is degenerate Tree

find(Santino) -> Aileen
find(Ken) -> Joyce
find(Santino) != find(Ken)
find(Santino) == find(Aileen)

find(Ken):

 jump to Ken node

 travel upward until root Joyce

 return root “Joyce”
Aileen

Santino

Paul

Joyce

KenSam

Alex

Sam

Alex

Paul
…Map<E, SetNode<E>> nodeInventory =

CSE 373 23SP 14

Implement union(x, y)
Key idea: easy to simply rearrange pointers to
union entire trees together!
● it doesn’t matter what the order of the trees are,

only that all the nodes from one tree are connected
to the other tree

union(Ken, Santino):

 rootK = find(Ken) //Joyce

 rootS = find(Santino) //Aileen

 set rootK to point to rootS

Aileen

Santino

Paul

Joyce

KenSam

Alex

RESULT:

Aileen

Santino

Paul

Joyce

KenSam

Alex

CSE 373 23SP 15

Union: Why bother with the second root?

Key idea: keeping the height of each tree short will help minimize runtime for
future find(x)
● Pointing directly to the individual element instead of the root can grow the tree height

union(Ken, Santino):

 rootK = find(Ken)

 rootS = find(Santino)

 set rootK to point to rootS

union(Ken, Santino):

 rootK = find(Ken)

 set rootK to point to Santino

Aileen

Santino

Paul
Joyce

KenSam

Alex

Why not just use:

Aileen

Santino

Paul

Joyce

KenSam

Alex

Height = 3

Height = 4

CSE 373 23SP 16

union(A, B):

 rootA = find(A)

 rootB = find(B)

 set rootA to point to rootB

find(A):

 jump to A node

 travel upward until root

 return ID

A series of calls to union that would create a worst-case runtime
for find on these Disjoint Sets:

A

B

C

D

Union runtime

union(A, B)

B

A

C

D

union(B, C)

union(C, D)

find(A) n runtime :(

CSE 373 23SP 17

Analyzing the union worst case

● How did we get a degenerate tree?
○ Even though pointing a root to a root usually helps with this, we can still get a

degenerate tree if we put the root of a large tree under the root of a small tree.
○ Instead of always putting rootA under rootB what if we could ensure the smaller tree

went under the larger tree?

B

A

C

D

union(C, D) B

A

C

D

What currently
happens

What would help avoid degenerate tree

CSE 373 23SP 18

Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation

CSE 373 23SP 19

WeightedUnion

Goal: Always pick the smaller tree to go
under the larger tree

Implementation: Store the number of nodes
(or “weight”) of each tree in the root
● Constant-time lookup instead of having to traverse the

entire tree to count

union(A, B):

 rootA = find(A)

 rootB = find(B)

 put lighter root under heavier root

A

union(A, B)

union(B, C)

union(C, D)

find(A)

weight: 1

B
weight: 1

C
weight: 1

D
weight: 1

234

O(1) runtime :)

CSE 373 23SP 20

WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

N H

1 0

CSE 373 23SP 21

WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1

N H

1 0

2 1

CSE 373 23SP 22

WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1

2

3

N H

1 0

2 1

4 ?

CSE 373 23SP 23

WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

N H

1 0

2 1

4 2

CSE 373 23SP 24

WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?

CSE 373 23SP 25

WeightedUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

N H

1 0

2 1

4 2

8 3
4

5 6

7

CSE 373 23SP 26

Consider the worst case where the tree height grows as fast as
possible
Worst case tree height is O(log N)

WeightedUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13
14

15

CSE 373 23SP 27

Runtime so far…

This is pretty good! But there’s one final optimization we can make:

path compression

Worst Case Runtime

makeSet(value) O(1)
find(value) O(log n)
union(x, y) O(log n)

kruskalMST(G graph)

 DisjointSets<V> msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST);

O(ElogV)

CSE 373 23SP 28

Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation

CSE 373 23SP 29

● Thus far, the modifications we’ve studied are designed to
preserve invariants
○ E.g. Performing rotations to preserve the AVL invariant
○ We rely on those invariants always being true so every call is fast

● Path compression is entirely different: we are modifying the tree
structure to improve future performance
○ Not adhering to a specific invariant
○ The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains

CSE 373 23SP 30

Path Compression: Idea

This is the worst-case topology if we use WeightedUnion

Key Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just constant time

work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13
14

15

CSE 373 23SP 31

Path Compression: Idea
This is the worst-case topology if we use WeightedUnion

Key Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just constant time

work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

Perform Path Compression on every find(), so future calls to find() are faster!

CSE 373 23SP 32

Path Compression: Details and Runtime
Run path compression on every find()!
○ Including the find()s that are invoked as part of a union()

Understanding the performance of M>1 operations requires
amortized analysis
○ Effectively averaging out rare events over many common ones
○ Typically used for “In-Practice” case

■ E.g. when we assume an array doesn’t resize “in practice”, we can do that because the rare resizing calls are
amortized over many faster calls

○ In 373 we don’t go in-depth on amortized analysis

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15

CSE 373 23SP 33

Path Compression: Runtime

M find()s on WeightedUnion requires takes O(M log N)

… but M find()s using the WeightedUnion and PathCompression
optimizations takes O(M log*N)!
○ log*n is the “iterated log”: the number of times you need to apply log to n before it’s

<= 1
○ Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CSE 373 23SP 34

Path Compression: Runtime

Path compression results in find()s and union()s that are very
very close to (amortized) constant time
○ log* is less than 5 for any realistic input
○ If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)! 🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the
known universe is 2256ish

CSE 373 23SP 35

Kruskal’s Runtime

Find and union are log|V| in worst case, but amortized constant “in practice”

Either way, dominated by time to sort the edges ☹
● For an MST to exist, E can’t be smaller than V, so assume it dominates
● Note: some people write |E|log|V|, which is the same (within a constant factor)

kruskalMST(G graph)

 DisjointSets<V> msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

CSE 373 23SP 36

Disjoint Set Implementation
Weighted Union
Path Compression
Array Implementation

CSE 373 23SP 37

Using Arrays for Up-Trees
Since every node can have at most one parent,
what if we use an array to store the parent
relationships?

Proposal: each node corresponds to an index,
where we store the index of the parent (or –1
for roots). Use the root index as the
representative ID!

Just like with heaps, tree picture still
conceptually correct, but exists in our minds!

Aileen

Santino

Paul

Joyce

KenSam

Alex

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

CSE 373 23SP 38

Using Arrays: Find
Initial jump to element still done with
extra Map

But traversing up the tree can be done
purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen

Santino

Paul

Joyce

KenSam

Alex

Alex

Aileen

Sam
…

find(A):

 index = jump to A node’s index

 while array[index] > 0:

 index = array[index]

 path compression

 return index

1

2

find(Alex)

1

2

= 0

Can still do path compression by setting all indices
along the way to the root index!

0

3

3

CSE 373 23SP 39

Using Arrays: Union

For WeightedUnion, we need to store
the number of nodes in each tree (the
weight)

Instead of just storing -1 to indicate a
root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen

Santino

Joyce

KenSam

Alex

union(A, B):

 rootA = find(A)

 rootB = find(B)

 use -1 * array[rootA] and -1 *

array[rootB] to determine weights

 put lighter root under heavier root

weight 4
weight 2

union(Ken, Santino)

Paul

weight 1

Aileen

Santino

Paul

Joyce

KenSam

Alex

CSE 373 23SP 40

Using Arrays: Union

For WeightedUnion, we need to store
the number of nodes in each tree (the
weight)

Instead of just storing -1 to indicate a
root, we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

union(A, B):

 rootA = find(A)

 rootB = find(B)

 use -1 * array[rootA] and -1 *

array[rootB] to determine weights

 put lighter root under heavier root

-6 0

Aileen (2)

Santino

Joyce

KenSam

Alex

weight 6

Paul

weight 1

Aileen

union(Ken, Santino)

CSE 373 23SP 41

Array Implementation Practice

1

6

3

weight = 1

4

2

105 7

0

98

11

15

13

weight = 8

14

12

1716

18

weight = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fill in the array representing this DisJoint set. Remember to Store (weight * -1) - 1 as the “parent” of the root nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -10 1 2 2 2 1 6 7 7 6 -8 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32

CSE 373 23SP 42

Array Implementation Practice

42

3

0

weight = 1

4

111

5

2

13

12

weight = 8

109

1415 8

weight = 6 weight = 2

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 -6 3 -1 -2 6 12 13 13 0 13 -8 12 12 12

Update the Array with the correct values after a call of union(14, 11) using WeightedUnion and PathCompression

CSE 373 23SP 43

Array Implementation Practice

43

3

0

weight = 1

4

11

1

5

2

13

12

weight = 14

109 14

15 8

weight = 2

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 13 3 -1 -2 6 12 13 13 13 13 -14 13 12 12

Update the Array with the correct values after a call of union(14, 11) using WeightedUnion and PathCompression

CSE 373 23SP 44

Questions?

CSE 373 23SP 45

That’s all!

CSE 373 23SP 46

Appendix

