
 1CSE 373 23SP

Lecture 19: Disjoint Sets CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warmup

KruskalMST(Graph G)
 initialize each vertex to be an independent
component
 sort the edges by weight
 foreach(edge (u, v) in sorted order){
 if(u and v are in different components){
 add (u,v) to the MST
 update u and v to be in the same component
 }
 }

Run Kruskal’s algorithm on the following graph to find the MST (minimum spanning
tree) of the graph below.
Below is the provided pseudocode for Kruksal’s algorithm to choose all the edges.

Slido Event #4005803
https://app.sli.do/event/6wH7
a1g9cB6kLbzgzuJNMh

https://app.sli.do/event/6wH7a1g9cB6kLbzgzuJNMh
https://app.sli.do/event/6wH7a1g9cB6kLbzgzuJNMh

CSE 373 23SP 3

Announcements

●

CSE 373 23SP 4

Disjoint Sets

CSE 373 23SP 5

Selecting an ADT

Kruskal’s needs to find what MST a vertex
belongs to, and union those MSTs together
● Our existing ADTs don’t lend themselves well to

“unioning” two sets…
● Let’s define a new one!

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

kruskalMST(G graph)

 Set(?) msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

CSE 373 23SP 6

Disjoint Sets ADT (aka “Union-Find”)

Kruskal’s will use a Disjoint Sets ADT under the
hood
● Conceptually, a single instance of this ADT contains a

“family” of sets that are disjoint (no element belongs to
multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either
a member or a unique ID)

Behavior
makeSet(value) – new set with value
as only member (and representative)
find(value) – return representative
of the set containing value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

kruskalMST(G graph)

 DisjointSets<V> msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST);

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

CSE 373 23SP 7

Disjoint Sets in mathematics

“In mathematics, two sets are said to be disjoint sets if they
have no element in common.” - Wikipedia

disjoint = not overlapping

Kevin

Aileen
Keanu

Sherdil

Leona

These two sets are disjoint sets

Nishu

Santino Brian

These two sets are not disjoint sets

Santino

Set #1 Set #2 Set #3 Set #4

CSE 373 23SP 8

In computer science, disjointsets can refer to this ADT/data structure
that keeps track of the multiple “mini” sets that are disjoint (confusing naming,
I know)

Disjoint Sets in computer science

This overall grey blob thing is the actual
disjoint sets, and it’s keeping track of any
number of mini-sets, which are all
disjoint (the mini sets have no
overlapping values).

Note: this might feel really different than ADTs
we’ve run into before. The ADTs we’ve seen
before (dictionaries, lists, sets, etc.) just store
values directly.
But the Disjoint Set ADT is particularly interested in
letting you group your values into sets and
keep track of which particular set your values are
in.

new ADT!

Kevin

Aileen
Keanu

Sherdil

Leona

Set #1 Set #2

CSE 373 23SP 9

DisjointSets ADT methods

Just 3 methods (and makeSet is pretty simple!)

● findSet(value)
● union(valueA, valueB)
● makeSet(value)

CSE 373 23SP 10

findSet(value)

findSet(value) returns some ID for which particular set the value
is in. For Disjoint Sets, we often call this the representative (as it’s
a value that represents the whole set).

Examples:

findSet(Brian)

findSet(Sherdil)

findSet(Velocity)

findSet(Kevin) == findSet(Aileen)

3

2

2

true

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu

Santino

Set #3

Brian

Santino

Set #4

CSE 373 23SP 11

union(valueA, valueB)

union(valueA, valueB) merges the set that A is in with the set that B is in.
(basically add the two sets together into one)

Example: union(Kevin, Nishu)

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu

Santino

Set #3

Brian

Santino

Set #4

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu
Santino

Brian

Santino

Set #4

CSE 373 23SP 12

makeSet(value)

makeSet(value) makes a new mini set that just has the value
parameter in it.

Examples:

makeSet(Elena)

makeSet(Anish)

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu

Santino

Set #3

Brian

Santino

Set #4

Set #5 Set #6

Elena Anisha

CSE 373 23SP 13

Disjoint Sets ADT Summary

Disjoint-Sets ADT

makeSet(value) – creates a new set within the disjoint set where the
only member is the value. Picks id/representative for set

state

behavior

Set of Sets
- Mini sets are disjoint: Elements must be unique across mini sets
- No required order
- Each set has id/representative

findSet(value) – looks up the set containing the value, returns
id/representative/ of that set
union(x, y) – looks up set containing x and set containing y, combines
two sets into one. All of the values of one set are added to the other,
and the now empty set goes away.

CSE 373 23SP 14

New ADT

Set ADT

create(x) - creates a new set with a single
member, x

Count of Elements

state

behavior

Set of elements
- Elements must be unique!
- No required order

add(x) - adds x into set if it is unique,
otherwise add is ignored
remove(x) – removes x from set

size() – returns current number of
elements in set

Disjoint-Set ADT

makeSet(x) – creates a new set within the disjoint set where the only
member is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing element x, returns
representative of that set
union(x, y) – looks up set containing x and set containing y, combines
two sets into one. Picks new representative for resulting set

D

B

C

A
D

C

F

B

A

G
H

CSE 373 23SP 15

Example

b

Rep: 1

a

Rep: 0

e

Rep: 4

c

Rep: 2

d

Rep: 3

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

CSE 373 23SP 16

Example

b

Rep: 1

e

Rep: 4

d

Rep: 3

c

a

Rep: 0

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

CSE 373 23SP 17

Example

findSet(a) == findSet(c)

findSet(a) == findSet(d)

e

Rep: 4

c

a

Rep: 0 b

Rep: 1

d

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

true

false

CSE 373 23SP 18

Questions?

CSE 373 23SP 19

That’s all!

CSE 373 23SP 20

Implementation

TreeDisjointSet<E>

makeSet(x)-create a new
tree of size 1 and add to
our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with
x and moves up tree to find
root

union(x, y)-append tree
with y as a child of tree
with x

Disjoint-Set ADT

makeSet(x) – creates a new set within
the disjoint set where the only member
is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique

across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing
element x, returns representative of
that set

union(x, y) – looks up set containing x
and set containing y, combines two sets
into one. Picks new representative for
resulting set

Dictionary<NodeValues,
NodeLocations>
nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior

SetNode overallRoot

add(x)

remove(x, y)
getRep()-returns data of
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode>
children

CSE 373 23SP 21

Implement makeSet(x)

Worst case runtime?
O(1)

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root

union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

 makeSet(0)

 makeSet(1)

 makeSet(2)

 makeSet(3)

 makeSet(4)

 makeSet(5)

CSE 373 23SP 22

QuickUnion Data Structure

 Fundamental idea:
○ QuickFind tracks each element’s ID
○ QuickUnion tracks each element’s parent. Only the root has an ID!

■ Each set becomes tree-like, but something slightly different called an up-tree: store pointers
from children to parents!

Joyce, Sam,
Ken, Alex

Aileen,
Santino

Paul

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Abstract Idea of “Disjoint
Sets”

Implementation using
QuickUnion

=

CSE 373 23SP 23

QuickUnion: Find

Key idea: can travel upward from any
node to find its representative ID

How do we jump to a node quickly?
● Also store a map from value to its node

(Omitted in future slides)

find(Santino) -> 1
find(Ken) -> 2
find(Santino) != find(Ken)
find(Santino) == find(Aileen)

find(Ken):

 jump to Ken node

 travel upward until root

 return ID
Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Sam

Alex

Paul
…

CSE 373 23SP 24

QuickUnion: Union
Key idea: easy to simply rearrange pointers to
union entire trees together!

Which of these implementations would you
prefer?

union(Ken, Santino):

 rootS = find(Santino)

 set Ken to point to rootS

union(Ken, Santino):

 rootK = find(Ken)

 rootS = find(Santino)

 set rootK to point to rootS

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

RESULT:

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

CSE 373 23SP 25

QuickUnion: Union
union(Ken, Santino):

 rootS = find(Santino)

 set Ken to point to rootS

union(Ken, Santino):

 rootK = find(Ken)

 rootS = find(Santino)

 set rootK to point to rootS

RESULT:

We prefer the right implementation because by changing just the root, we effectively pull the
entire tree into the new set!
○ If we change the first node instead, we have to do more work for the rest of the old tree
○ A rare example of constant time work manipulating a factor of n elements

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

CSE 373 23SP 26

QuickUnion: Why bother with the second root?

Key idea: will help minimize runtime for future find() calls if we keep the
height of the tree short!
● Pointing directly to the second element would make the tree taller

union(Ken, Santino):

 rootK = find(Ken)

 rootS = find(Santino)

 set rootK to point to rootS

union(Ken, Santino):

 rootK = find(Ken)

 set rootK to point to Santino

Aileen (1)

Santino

Paul (3)
Joyce

KenSam

Alex

Why not just use:

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

CSE 373 23SP 27

QuickUnion: Checking in on those runtimes

Maps to Sets QuickFind QuickUnion

makeSet(value) 𝚯(1) 𝚯(1) 𝚯(1)
findSet(value) 𝚯(n) 𝚯(1) 𝚯(n)
union(x, y) 𝚯(n) 𝚯(n) 𝚯(1)

union(A, B):

 rootA = find(A)

 rootB = find(B)

 set smallerRoot to point to largerRoot

kruskalMST(G graph)

 DisjointSets<V> msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST);

Only if we discount the runtime
from union’s calls to find!
Otherwise, 𝚯(n).
● However, for Kruskal’s not a bad

assumption: we only ever call union with
roots anyway

CSE 373 23SP 28

union(A, B):

 rootA = find(A)

 rootB = find(B)

 set rootA to point to rootB

find(A):

 jump to A node

 travel upward until root

 return ID

Even with the ”use-the-roots” implementation of union, try to
come up with a series of calls to union that would create a
worst-case runtime for find on these Disjoint Sets:

A

B

C

D

QuickUnion: Let’s Build a Worst Case

CSE 373 23SP 29

union(A, B):

 rootA = find(A)

 rootB = find(B)

 set rootA to point to rootB

find(A):

 jump to A node

 travel upward until root

 return ID

Even with the ”use-the-roots” implementation of union, try to
come up with a series of calls to union that would create a
worst-case runtime for find on these Disjoint Sets:

A

B

C

D

QuickUnion: Let’s Build a Worst Case

union(A, B)
union(B, C)
union(C, D)
find(A) B

A

C

D

CSE 373 23SP 30

Analyzing the QuickUnion Worst Case

● How did we get a degenerate tree?
○ Even though pointing a root to a root usually helps with this, we can still get a

degenerate tree if we put the root of a large tree under the root of a small tree.
○ In QuickUnion, rootA always goes under rootB

■ But what if we could ensure the smaller tree went under the larger tree?

B

A

C

D

union(C, D) B

A

C

D

What currently
happens

What would help
avoid degenerate
tree

CSE 373 23SP 31

WeightedQuickUnion

Goal: Always pick the smaller tree to go
under the larger tree

Implementation: Store the number of nodes
(or “weight”) of each tree in the root
● Constant-time lookup instead of having to traverse the

entire tree to count

union(A, B):

 rootA = find(A)

 rootB = find(B)

 put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what
happens?

B

A C D

Perfect! Best runtime we can
get.

CSE 373 23SP 32

WeightedQuickUnion: Performance

union()’s runtime is still dependent on find()’s runtime, which is a function
of the tree’s height

What’s the worst-case height for WeightedQuickUnion?

union(A, B):

 rootA = find(A)

 rootB = find(B)

 put lighter root under heavier root

CSE 373 23SP 33

WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

N H

1 0

CSE 373 23SP 34

WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1

N H

1 0

2 1

CSE 373 23SP 35

WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1

2

3

N H

1 0

2 1

4 ?

CSE 373 23SP 36

WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

N H

1 0

2 1

4 2

CSE 373 23SP 37

WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?

CSE 373 23SP 38

WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as
possible

0

1 2

3

N H

1 0

2 1

4 2

8 3
4

5 6

7

CSE 373 23SP 39

Consider the worst case where the tree height grows as fast as
possible
Worst case tree height is Θ(log N)

WeightedQuickUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13
14

15

CSE 373 23SP 40

Why Weights Instead of Heights?

We used the number of items in a tree to decide upon the root

Why not use the height of the tree?
○HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))

○ It’s easier to track weights than heights, even though WeightedQuickUnion
can lead to some suboptimal structures like this one:

1 2

0

4

6

53 8

9

7+ 1 2

0

4 653

8

9

7

CSE 373 23SP 41

WeightedQuickUnion Runtime

This is pretty good! But there’s one final optimization we can make: path
compression

Maps to Sets QuickFind QuickUnion WeightedQuickUnion

makeSet(value) 𝚯(1) 𝚯(1) 𝚯(1) 𝚯(1)
find(value) 𝚯(n) 𝚯(1) 𝚯(n) 𝚯(log n)
union(x, y)
assuming root args

𝚯(n) 𝚯(n) 𝚯(1) 𝚯(1)

union(x, y) 𝚯(n) 𝚯(n) 𝚯(n) 𝚯(log n)

CSE 373 23SP 42

● Thus far, the modifications we’ve studied are designed to
preserve invariants
○ E.g. Performing rotations to preserve the AVL invariant
○ We rely on those invariants always being true so every call is fast

● Path compression is entirely different: we are modifying the tree
structure to improve future performance
○ Not adhering to a specific invariant
○ The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains

CSE 373 23SP 43

Path Compression: Idea

This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just

constant time work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13
14

15

CSE 373 23SP 44

Path Compression: Idea
This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just constant time

work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

Perform Path Compression on every find(), so future calls to find()
are faster!

CSE 373 23SP 45

Path Compression: Details and Runtime
Run path compression on every find()!
○ Including the find()s that are invoked as part of a union()

Understanding the performance of M>1 operations requires
amortized analysis
○ Effectively averaging out rare events over many common ones
○ Typically used for “In-Practice” case

■ E.g. when we assume an array doesn’t resize “in practice”, we can do that because the rare resizing
calls are amortized over many faster calls

○ In 373 we don’t go in-depth on amortized analysis

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15

CSE 373 23SP 46

Path Compression: Runtime

M find()s on WeightedQuickUnion requires takes Θ(M log N)

… but M find()s on WeightedQuickUnionWithPathCompression
takes O(M log*N)!
○ log*n is the “iterated log”: the number of times you need to apply log to n

before it’s <= 1
○ Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CSE 373 23SP 47

Path Compression: Runtime

Path compression results in find()s and union()s that are very
very close to (amortized) constant time
○ log* is less than 5 for any realistic input
○ If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)! 🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the
known universe is 2256ish

