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Lecture 19: Disjoint Sets CSE 373: Data Structures and 
Algorithms
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Warmup

KruskalMST(Graph G) 
   initialize each vertex to be an independent 
component
   sort the edges by weight
   foreach(edge (u, v) in sorted order){
      if(u and v are in different components){
         add (u,v) to the MST
         update u and v to be in the same component
      }
   }

Run Kruskal’s algorithm on the following graph to find the MST (minimum spanning 
tree) of the graph below. 
Below is the provided pseudocode for Kruksal’s algorithm to choose all the edges.

Slido Event #4005803
https://app.sli.do/event/6wH7
a1g9cB6kLbzgzuJNMh   

https://app.sli.do/event/6wH7a1g9cB6kLbzgzuJNMh
https://app.sli.do/event/6wH7a1g9cB6kLbzgzuJNMh
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Announcements

●
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Disjoint Sets
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Selecting an ADT

Kruskal’s needs to find what MST a vertex 
belongs to, and union those MSTs together
● Our existing ADTs don’t lend themselves well to 

“unioning” two sets…
● Let’s define a new one!
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kruskalMST(G graph)

  Set(?) msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)
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Disjoint Sets ADT (aka “Union-Find”) 

Kruskal’s will use a Disjoint Sets ADT under the 
hood
● Conceptually, a single instance of this ADT contains a 

“family” of sets that are disjoint (no element belongs to 
multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either 
a member or a unique ID)

Behavior
makeSet(value) – new set with value 
as only member (and representative)
find(value) – return representative 
of the set containing value
union(x, y) – combine sets containing 
x and y into one set with all 
elements, choose single new 
representative

kruskalMST(G graph)

  DisjointSets<V> msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST);
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Disjoint Sets in mathematics

“In mathematics, two sets are said to be disjoint sets if they 
have no element in common.” - Wikipedia 

disjoint = not overlapping

Kevin

Aileen
Keanu

Sherdil

Leona

These two sets are disjoint sets

Nishu

Santino Brian

These two sets are not disjoint sets

Santino

Set #1 Set #2 Set #3 Set #4
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In computer science, disjointsets can refer to this ADT/data structure 
that keeps track of the multiple “mini” sets that are disjoint (confusing naming, 
I know)  

Disjoint Sets in computer science

This overall grey blob thing is the actual 
disjoint sets, and it’s keeping track of any 
number of mini-sets, which are all 
disjoint (the mini sets have no 
overlapping values).

Note: this might feel really different than ADTs 
we’ve run into before.  The ADTs we’ve seen 
before (dictionaries, lists, sets, etc.) just store 
values directly.
But the Disjoint Set ADT is particularly interested in
letting you group your values into sets and 
keep track of which particular set your values are 
in.

new ADT!

Kevin

Aileen
Keanu

Sherdil

Leona

Set #1 Set #2
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DisjointSets ADT methods

Just 3 methods (and makeSet is pretty simple!)

● findSet(value)
● union(valueA, valueB)
● makeSet(value)
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findSet(value)

findSet(value) returns some ID for which particular set the value 
is in.  For Disjoint Sets, we often call this the representative (as it’s 
a value that represents the whole set).

Examples:

findSet(Brian) 

findSet(Sherdil)

findSet(Velocity)

findSet(Kevin) == findSet(Aileen)

3

2

2

true

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu

Santino

Set #3

Brian

Santino

Set #4



CSE 373 23SP  11

union(valueA, valueB)

union(valueA, valueB) merges the set that A is in with the set that B is in.  
(basically add the two sets together into one)

Example:  union(Kevin, Nishu)

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu

Santino

Set #3

Brian

Santino

Set #4

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu
Santino

Brian

Santino

Set #4
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makeSet(value)

makeSet(value) makes a new mini set that just has the value 
parameter in it.

Examples:

makeSet(Elena)

makeSet(Anish)

Kevin

Aileen

Keanu

Set #1

Sherdil

Leona

Set #2

Nishu

Santino

Set #3

Brian

Santino

Set #4

Set #5 Set #6

Elena Anisha
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Disjoint Sets ADT Summary

Disjoint-Sets ADT

makeSet(value) – creates a new set within the disjoint set where the 
only member is the value. Picks id/representative for set

state

behavior

Set of Sets
- Mini sets are disjoint: Elements must be unique across mini sets
- No required order
- Each set has id/representative

findSet(value) – looks up the set containing the value, returns 
id/representative/ of that set
union(x, y) – looks up set containing x and set containing y, combines 
two sets into one.  All of the values of one set are added to the other, 
and the now empty set goes away.
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New ADT

Set ADT

create(x) - creates a new set with a single 
member, x

Count of Elements

state

behavior

Set of elements
- Elements must be unique!
- No required order

add(x) - adds x into set if it is unique, 
otherwise add is ignored
remove(x) – removes x from set

size() – returns current number of 
elements in set

Disjoint-Set ADT

makeSet(x) – creates a new set within the disjoint set where the only 
member is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing element x, returns 
representative of that set
union(x, y) – looks up set containing x and set containing y, combines 
two sets into one. Picks new representative for resulting set

D
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C

A
D

C
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B

A

G
H
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Example

b

Rep: 1

a

Rep: 0

e

Rep: 4

c

Rep: 2

d

Rep: 3

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)
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Example

b

Rep: 1

e

Rep: 4

d

Rep: 3

c

a

Rep: 0

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)
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Example

findSet(a) == findSet(c)

findSet(a) == findSet(d)

e

Rep: 4

c

a

Rep: 0 b

Rep: 1

d

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

true

false
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Questions?
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That’s all!
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Implementation

TreeDisjointSet<E>

makeSet(x)-create a new 
tree of size 1 and add to 
our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with 
x and moves up tree to find 
root

union(x, y)-append tree 
with y as a child of tree 
with x 

Disjoint-Set ADT

makeSet(x) – creates a new set within 
the disjoint set where the only member 
is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique 

across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing 
element x, returns representative of 
that set

union(x, y) – looks up set containing x 
and set containing y, combines two sets 
into one. Picks new representative for 
resulting set

Dictionary<NodeValues, 
NodeLocations> 
nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior

SetNode overallRoot

add(x)

remove(x, y)
getRep()-returns data of 
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode> 
children
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Implement makeSet(x)

Worst case runtime?
O(1) 

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root

union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

 makeSet(0)

 makeSet(1)

 makeSet(2)

 makeSet(3)

 makeSet(4)

 makeSet(5)
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QuickUnion Data Structure

    Fundamental idea:
○ QuickFind tracks each element’s ID
○ QuickUnion tracks each element’s parent.  Only the root has an ID!

■ Each set becomes tree-like, but something slightly different called an up-tree: store pointers 
from children to parents!

Joyce, Sam, 
Ken, Alex

Aileen, 
Santino

Paul

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Abstract Idea of “Disjoint 
Sets”

Implementation using 
QuickUnion

=
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QuickUnion: Find

Key idea: can travel upward from any 
node to find its representative ID

How do we jump to a node quickly?
● Also store a map from value to its node 

(Omitted in future slides)

find(Santino) -> 1
find(Ken) -> 2
find(Santino) != find(Ken)
find(Santino) == find(Aileen)

find(Ken):

  jump to Ken node

  travel upward until root

  return ID
Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Sam

Alex

Paul
…
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QuickUnion: Union
Key idea: easy to simply rearrange pointers to 
union entire trees together!

Which of these implementations would you 
prefer?

union(Ken, Santino):

  rootS = find(Santino)

  set Ken to point to rootS

union(Ken, Santino):

  rootK = find(Ken)

  rootS = find(Santino)

  set rootK to point to rootS

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

RESULT:

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex
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QuickUnion: Union
union(Ken, Santino):

  rootS = find(Santino)

  set Ken to point to rootS

union(Ken, Santino):

  rootK = find(Ken)

  rootS = find(Santino)

  set rootK to point to rootS

RESULT:

We prefer the right implementation because by changing just the root, we effectively pull the 
entire tree into the new set!
○ If we change the first node instead, we have to do more work for the rest of the old tree
○ A rare example of constant time work manipulating a factor of n elements

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex



CSE 373 23SP  26

QuickUnion: Why bother with the second root?

Key idea: will help minimize runtime for future find() calls if we keep the 
height of the tree short!
● Pointing directly to the second element would make the tree taller

union(Ken, Santino):

  rootK = find(Ken)

  rootS = find(Santino)

  set rootK to point to rootS

union(Ken, Santino):

  rootK = find(Ken)

  set rootK to point to Santino

Aileen (1)

Santino

Paul (3)
Joyce

KenSam

Alex

Why not just use:

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex
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QuickUnion: Checking in on those runtimes

Maps to Sets QuickFind QuickUnion

makeSet(value) 𝚯(1) 𝚯(1) 𝚯(1)
findSet(value) 𝚯(n) 𝚯(1) 𝚯(n)
union(x, y) 𝚯(n) 𝚯(n) 𝚯(1)

union(A, B):

  rootA = find(A)

  rootB = find(B)

  set smallerRoot to point to largerRoot

kruskalMST(G graph)

  DisjointSets<V> msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST);

Only if we discount the runtime 
from union’s calls to find! 
Otherwise, 𝚯(n).
● However, for Kruskal’s not a bad 

assumption: we only ever call union with 
roots anyway
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union(A, B):

  rootA = find(A)

  rootB = find(B)

  set rootA to point to rootB

find(A):

  jump to A node

  travel upward until root

  return ID

Even with the ”use-the-roots” implementation of union, try to 
come up with a series of calls to union that would create a 
worst-case runtime for find on these Disjoint Sets:

A

B

C

D

QuickUnion: Let’s Build a Worst Case
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union(A, B):

  rootA = find(A)

  rootB = find(B)

  set rootA to point to rootB

find(A):

  jump to A node

  travel upward until root

  return ID

Even with the ”use-the-roots” implementation of union, try to 
come up with a series of calls to union that would create a 
worst-case runtime for find on these Disjoint Sets:

A

B

C

D

QuickUnion: Let’s Build a Worst Case

union(A, B)
union(B, C)
union(C, D)
find(A) B

A

C

D
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Analyzing the QuickUnion Worst Case

● How did we get a degenerate tree?
○ Even though pointing a root to a root usually helps with this, we can still get a 

degenerate tree if we put the root of a large tree under the root of a small tree.
○ In QuickUnion, rootA always goes under rootB

■ But what if we could ensure the smaller tree went under the larger tree?

B

A

C

D

union(C, D) B

A

C

D

What currently 
happens

What would help 
avoid degenerate 
tree
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WeightedQuickUnion

Goal: Always pick the smaller tree to go 
under the larger tree

Implementation: Store the number of nodes 
(or “weight”) of each tree in the root
● Constant-time lookup instead of having to traverse the 

entire tree to count

union(A, B):

  rootA = find(A)

  rootB = find(B)

  put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what 
happens?

B

A C D

Perfect! Best runtime we can 
get.
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WeightedQuickUnion: Performance

union()’s runtime is still dependent on find()’s runtime, which is a function 
of the tree’s height

What’s the worst-case height for WeightedQuickUnion?

union(A, B):

  rootA = find(A)

  rootB = find(B)

  put lighter root under heavier root
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WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

N H

1 0
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WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1

N H

1 0

2 1
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WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1

2

3

N H

1 0

2 1

4 ?
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WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1 2

3

N H

1 0

2 1

4 2
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WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?
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WeightedQuickUnion: Performance

Consider the worst case where the tree height grows as fast as 
possible

0

1 2

3

N H

1 0

2 1

4 2

8 3
4

5 6

7
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Consider the worst case where the tree height grows as fast as 
possible
Worst case tree height is Θ(log N)

WeightedQuickUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13
14

15
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Why Weights Instead of Heights?

We used the number of items in a tree to decide upon the root

Why not use the height of the tree?
○HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))

○ It’s easier to track weights than heights, even though WeightedQuickUnion 
can lead to some suboptimal structures like this one:

1 2

0

4

6

53 8

9

7+ 1 2

0

4 653

8

9

7
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WeightedQuickUnion Runtime

This is pretty good! But there’s one final optimization we can make: path 
compression

Maps to Sets QuickFind QuickUnion WeightedQuickUnion

makeSet(value) 𝚯(1) 𝚯(1) 𝚯(1) 𝚯(1)
find(value) 𝚯(n) 𝚯(1) 𝚯(n) 𝚯(log n)
union(x, y)
assuming root args

𝚯(n) 𝚯(n) 𝚯(1) 𝚯(1)

union(x, y) 𝚯(n) 𝚯(n) 𝚯(n) 𝚯(log n)
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● Thus far, the modifications we’ve studied are designed to 
preserve invariants
○ E.g. Performing rotations to preserve the AVL invariant
○ We rely on those invariants always being true so every call is fast

● Path compression is entirely different: we are modifying the tree 
structure to improve future performance
○ Not adhering to a specific invariant
○ The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains
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Path Compression: Idea

This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just 

constant time work to point to root too)
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3

4

5 6

7

8

9 10

11

12

13
14

15



CSE 373 23SP  44

Path Compression: Idea
This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do find(15), move all visited nodes under the root
● Additional cost is insignificant (we already have to visit those nodes, just constant time 

work to point to root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

Perform Path Compression on every find(), so future calls to find() 
are faster!
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Path Compression: Details and Runtime
Run path compression on every find()!
○ Including the find()s that are invoked as part of a union()

Understanding the performance of M>1 operations requires 
amortized analysis
○ Effectively averaging out rare events over many common ones
○ Typically used for “In-Practice” case

■ E.g. when we assume an array doesn’t resize “in practice”, we can do that because the rare resizing 
calls are amortized over many faster calls

○ In 373 we don’t go in-depth on amortized analysis

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15
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Path Compression: Runtime

M find()s on WeightedQuickUnion requires takes Θ(M log N)

… but M find()s on WeightedQuickUnionWithPathCompression 
takes O(M log*N)!
○ log*n is the “iterated log”: the number of times you need to apply log to n 

before it’s <= 1
○ Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Path Compression: Runtime

Path compression results in find()s and union()s that are very 
very close to (amortized) constant time
○ log* is less than 5 for any realistic input
○ If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)!  🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the 
known universe is 2256ish


