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Dijkstra’s Algorithm Warmup

2

Order Added to 
Known Set:

Vertex Known? distTo edgeTo

A ∞

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

A B
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∞

∞
∞

∞

start

Slido Event #2633637
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CSE 373 23SP  3

Vertex Known? distTo edgeTo

A Y 0 /

B ∞

C ≤ 2 A

D ≤ 1 A

E ∞

F ∞

G ∞

Dijkstra’s Algorithm Warmup

Order Added to 
Known Set:
A

A B

C
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Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 6 D

C ≤ 2 A

D Y 1 A

E ≤ 2 D

F ≤ 7 D

G ≤ 6 D

Dijkstra’s Algorithm Warmup

Order Added to 
Known Set:
A, D

A B

C
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G
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Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 6 D

C Y 2 A

D Y 1 A

E ≤ 2 D

F ≤ 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to 
Known Set:
A, D, C
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Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F ≤ 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to 
Known Set:
A, D, C, E

A B

C
D

F

E

G

0 3??
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Vertex Known? distTo edgeTo

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F ≤ 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to 
Known Set:
A, D, C, E, B

A B

C
D

F

E

G
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Vertex Known? distTo edgeTo

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to 
Known Set:
A, D, C, E, B, F

A B

C
D
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G
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Vertex Known? distTo edgeTo

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

Dijkstra’s Algorithm: Example #2

Order Added to 
Known Set:
A, D, C, E, B, F, G

A B

C
D

F

E

G
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Announcements

Midterm resubmission due Wednesday

- NO LATE SUBMISSIONS
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Minimum Spanning Trees
Prim’s and Kruskal’s Algorithms
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Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose where to 
build wires to connect all these cities to the plant. 

She knows how much it would cost to lay electric wires between any pair of 
cities, and wants the cheapest way to make sure electricity runs from the 
plant to every city.
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MST Problem

What do we need? A set of edges such that:
● Every vertex touches at least one of the edges. The edges “span” the 

graph.
● The graph on just those edges is connected.
● The minimum-weight set of edges that meet those conditions.

Claim: The set of edges we pick never has a cycle. Why?

MST is the exact number of edges to connect all vertices
● taking away 1 edge breaks connectedness 
● adding 1 edge makes a cycle
● contains exactly V – 1 edges

Our result is a tree!

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can get 
from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem

An undirected, connected acyclic graph.

Tree (when talking about graphs)

Question:
Is there always a unique 
MST for a given graph, 
yes or no?
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Minimum Spanning Trees (MSTs)

A Minimum Spanning Tree for a graph is a set of that graph’s edges 
that connect all of that graph’s vertices (spanning) while minimizing 
the total weight of the set (minimum)
○ Note: does NOT necessarily minimize the path from each vertex to every other 

vertex
○ Any tree with V vertices will have V-1 edges
○ A separate entity from the graph itself! More of an “annotation” applied to the 

graph, just like a Shortest Paths Tree (SPT)
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Minimum Spanning 
Tree
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Why do MST Algorithms Work?

● Two useful properties for MST edges. We can think about them from 
either perspective: 
○ Cycle Property: The heaviest edge along a cycle is NEVER part of an MST. 
○ Cut Property: Split the vertices of the graph into any two sets A and B. The lightest edge 

between A and B is ALWAYS part of an MST. (Prim’s thinks this way)
● Whenever you add an edge to a tree you create exactly one cycle. 

Removing any edge from that cycle gives another tree!
● This observation, combined with the cycle and cut properties form the 

basis of all of the greedy algorithms for MSTs.
○ greedy algorithm: chooses best known option at each point and commits, rather than 

waiting for a global view of the graph before deciding
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Shortest Path vs Minimum Spanning
Shortest Path Problem Minimum Spanning Tree Problem

A

B

D

E

C

3
6

2
1

4

Shortest Path Tree
● Specific start node (if you have a different start 

node, that changes the whole SPT, so there are 
multiple SPTs for graphs frequently)

● Keeps track of total path length

Minimum Spanning Tree
● No specific start node, since the goal is just to minimize the 

edge weights sum. Often only one possible MST that has 
the minimum sum

● All nodes connected
● Keeps track of cheapest edges that maintain connectivity

SPT from 
Factory 

MST of the 
graph

Given: a directed graph G and vertices s, t 
Find: the shortest path from s to t. 

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can get 
from any vertex of G to any other on only those edges.
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Minimum Spanning Trees
Prim’s and Kruskal’s Algorithms
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Finding an MST

Here are two ideas for finding an MST:

Think vertex-by-vertex
● Maintain a tree over a set of vertices
● Have each vertex remember the cheapest edge that could connect it to that set
● At every step, connect the vertex that can be connected the cheapest

Think edge-by-edge
● Sort edges by weight. In increasing order:

○ add it if it connects new things to each other (don’t add it if it would create 
a cycle)

Prim
’s

Kruskal’s

Both ideas work!!
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Dijkstra’s versus Prim’s

Dijkstra’s Algorithm
Dijkstra’s proceeds radially from its source, because it 
chooses edges by path length from source

Prim’s Algorithm
Prim’s jumps around the graph (the 
perimeter), because it chooses edges by 
edge weight (there’s no source)
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Prim’s Algorithm

Dijkstra’s
1. Start at source
2. Update distance from current to 

unprocessed neighbors
3. Add closest unprocessed 

neighbor to solution
4. Repeat until all vertices have been 

marked processed

 

Algorithm idea: 
1. Start at any node
2. Investigate edges that 

connect unprocessed 
vertices

3. Add the lightest edge 
that grows connectivity 
to solution

4. Repeat until all vertices 
have been marked 
processed
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Question

Which lines of Dijkstra can we 
change to create our new algorithm?
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Adapting Dijkstra’s: Prim’s Algorithm
primsShortestPath(G graph, V start)

  Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0
  PriorityQueue<V> perimeter; perimeter.add(start);

  while (!perimeter.isEmpty()):

    u = perimeter.removeMin()

    known.add(u)

    for each edge (u,v) to unknown v with weight w:

      oldDist = distTo.get(v)      // previous smallest edge to v

      newDist = distTo.get(u) + w  // is this a smaller edge to v?

      if (newDist < oldDist):

        distTo.put(u, newDist)

        edgeTo.put(u, v)

        if (perimeter.contains(v)):

          perimeter.changePriority(v, newDist)

        else:

          perimeter.add(v, newDist)

distTo.get(u) + 

● Normally, Dijkstra’s checks for a 
shorter path from the start.

● But MSTs don’t care about 
individual paths, only the overall 
weight!

● New condition: “would this be a 
smaller edge to connect the 
current known set to the rest of the 
graph?”

X

KNOWN

3??

3

1

A

1

C
1??

B

4
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Try It Out

Vertex Distance Best Edge Processed

A

B

C

D

E

F

G

-

2

4

7

(A, B)

(A, C)

(A, D)

X ✓

✓

3

50

6

(B, F) ✓

(B, E)

(B, G)

 

✓

2

5 .

(C, D) .

(C, E) .

✓

✓

✓

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

primsShortestPath(G graph, V start)

  Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0
  PriorityQueue<V> perimeter; perimeter.add(start);

  while (!perimeter.isEmpty()):

    u = perimeter.removeMin()

    known.add(u)

    for each edge (u,v) to unknown v with weight w:

      oldDist = distTo.get(v)      // previous smallest edge to v

      newDist = distTo.get(u) + w  // is this a smaller edge to v?

      if (newDist < oldDist):

        distTo.put(u, newDist)

        edgeTo.put(u, v)

        if (perimeter.contains(v)):

          perimeter.changePriority(v, newDist)

        else:

          perimeter.add(v, newDist)
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A Different Approach

Suppose the MST on the right was produced by Prim’s

Observation: We basically choose all the smallest edges 
in the entire graph (1, 2, 3, 4, 6)
● The only exception was 5. Why shouldn’t we add edge 5?
● Because adding 5 would create a cycle, and to connect A, C, & D we’d 

rather choose 1 & 4 than 1 & 5 or 4 & 5.

Prim’s thinks “vertex by vertex”, but what if you think 
“edge by edge” instead?
● Start with the smallest edge in the entire graph and work your way up
● Add the edge to the MST as long as it connects two new groups 

(meaning don’t add any edges that would create a cycle)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Building an MST “edge by 
edge” in this graph:

• Add edge 1
• Add edge 2
• Add edge 3
• Add edge 4
• Skip edge 5 (would create a 

cycle)
• Add edge 6
• Finished: all vertices in the MST!
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Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)

  Set(?) msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

Key Intuition: Kruskal’s keeps track of 
isolated “islands” of vertices (each is a 
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different 

“islands”, add it to the MST! Now those 
“islands” need to be combined.
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Kruskal’s Algorithm

kruskalMST(G graph)

  Set(?) msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)
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“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of 
isolated “islands” of vertices (each is a 
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different 

“islands”, add it to the MST! Now those 
“islands” need to be combined.
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Kruskal’s Algorithm

kruskalMST(G graph)

  Set(?) msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)
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“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of 
isolated “islands” of vertices (each is a 
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different 

“islands”, add it to the MST! Now those 
“islands” need to be combined.
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Kruskal’s Algorithm

kruskalMST(G graph)

  Set(?) msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)
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“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of 
isolated “islands” of vertices (each is a 
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different 

“islands”, add it to the MST! Now those 
“islands” need to be combined.
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Kruskal’s Algorithm

kruskalMST(G graph)

  Set(?) msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)
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“islands”

4This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of 
isolated “islands” of vertices (each is a 
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different 

“islands”, add it to the MST! Now those 
“islands” need to be combined.
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Kruskal’s Algorithm

kruskalMST(G graph)

  Set(?) msts; Set finalMST;

  initialize msts with each vertex as single-element MST

  sort all edges by weight (smallest to largest)

  for each edge (u,v) in ascending order:

    uMST = msts.find(u)

    vMST = msts.find(v)

    if (uMST != vMST):

      finalMST.add(edge (u, v))

      msts.union(uMST, vMST)
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“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of 
isolated “islands” of vertices (each is a 
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the 

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different 

“islands”, add it to the MST! Now those 
“islands” need to be combined.
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Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G) 
   initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)
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Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G) 
   initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)

Yes

Yes

Yes

Yes

No Cycle A,C,D,A

Yes

No Cycle A,C,E,D,A

Cycle A,D,F,B,ANo

No Cycle A,C,E,F,D,A

No Cycle C,A,B,F,C
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Kruskal’s Implementation

Some lines of code there were a little sketchy. 

> initialize each vertex to be its own component
> Update u and v to be in the same component

Can we use one of our data structures?

KruskalMST(Graph G) 
   initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}
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Questions?
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That’s all!


