
 1CSE 373 23SP

Lecture 18: MSTs CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Dijkstra’s Algorithm Warmup

2

Order Added to
Known Set:

Vertex Known? distTo edgeTo

A ∞

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

A B

C
D

F

E

G

0 ∞
2

1
2 5

1
1

1

2 6
5 3

10

∞

∞

∞
∞

∞

start

Slido Event #2633637
https://app.sli.do/event/kbAC
UWKZMpAbe41DJJZSWJ

https://app.sli.do/event/kbACUWKZMpAbe41DJJZSWJ
https://app.sli.do/event/kbACUWKZMpAbe41DJJZSWJ

CSE 373 23SP 3

Vertex Known? distTo edgeTo

A Y 0 /

B ∞

C ≤ 2 A

D ≤ 1 A

E ∞

F ∞

G ∞

Dijkstra’s Algorithm Warmup

Order Added to
Known Set:
A

A B

C
D

F

E

G

0 ∞
2

1
2 5

1
1

1

2 6
5 3

10

∞

∞

1??

2??

∞

start

CSE 373 23SP 4

Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 6 D

C ≤ 2 A

D Y 1 A

E ≤ 2 D

F ≤ 7 D

G ≤ 6 D

Dijkstra’s Algorithm Warmup

Order Added to
Known Set:
A, D

A B

C
D

F

E

G

0 6??

2

1
2 5

1
1

1

2 6
5 3

10

2??

6??

1

2??

7??

start

CSE 373 23SP 5

Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 6 D

C Y 2 A

D Y 1 A

E ≤ 2 D

F ≤ 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to
Known Set:
A, D, C

A B

C
D

F

E

G

0 6??

2

1
2 5

1
1

1

2 6
5 3

10

2??

6??

1

2

4??

start

CSE 373 23SP 6

Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F ≤ 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to
Known Set:
A, D, C, E

A B

C
D

F

E

G

0 3??

2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1

2

4??

start

CSE 373 23SP 7

Vertex Known? distTo edgeTo

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F ≤ 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to
Known Set:
A, D, C, E, B

A B

C
D

F

E

G

0 3

2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1

2

4??

start

CSE 373 23SP 8

Vertex Known? distTo edgeTo

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G ≤ 6 D

Dijkstra’s Algorithm: Example #2

Order Added to
Known Set:
A, D, C, E, B, F

A B

C
D

F

E

G

0 3

2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1

2

4

start

CSE 373 23SP 9

Vertex Known? distTo edgeTo

A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

Dijkstra’s Algorithm: Example #2

Order Added to
Known Set:
A, D, C, E, B, F, G

A B

C
D

F

E

G

0 3

2

1
2 5

1
1

1

2 6
5 3

10

2

6

1

2

4

start

CSE 373 23SP 10

Announcements

Midterm resubmission due Wednesday

- NO LATE SUBMISSIONS

CSE 373 23SP 11

Minimum Spanning Trees
Prim’s and Kruskal’s Algorithms

CSE 373 23SP 12

Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose where to
build wires to connect all these cities to the plant.

She knows how much it would cost to lay electric wires between any pair of
cities, and wants the cheapest way to make sure electricity runs from the
plant to every city.

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

CSE 373 23SP 13

MST Problem

What do we need? A set of edges such that:
● Every vertex touches at least one of the edges. The edges “span” the

graph.
● The graph on just those edges is connected.
● The minimum-weight set of edges that meet those conditions.

Claim: The set of edges we pick never has a cycle. Why?

MST is the exact number of edges to connect all vertices
● taking away 1 edge breaks connectedness
● adding 1 edge makes a cycle
● contains exactly V – 1 edges

Our result is a tree!

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can get
from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem

An undirected, connected acyclic graph.

Tree (when talking about graphs)

Question:
Is there always a unique
MST for a given graph,
yes or no?

A

B

D

E

C

3
6

2

1

4

CSE 373 23SP 14

Minimum Spanning Trees (MSTs)

A Minimum Spanning Tree for a graph is a set of that graph’s edges
that connect all of that graph’s vertices (spanning) while minimizing
the total weight of the set (minimum)
○ Note: does NOT necessarily minimize the path from each vertex to every other

vertex
○ Any tree with V vertices will have V-1 edges
○ A separate entity from the graph itself! More of an “annotation” applied to the

graph, just like a Shortest Paths Tree (SPT)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Minimum Spanning
Tree

CSE 373 23SP 15

Why do MST Algorithms Work?

● Two useful properties for MST edges. We can think about them from
either perspective:
○ Cycle Property: The heaviest edge along a cycle is NEVER part of an MST.
○ Cut Property: Split the vertices of the graph into any two sets A and B. The lightest edge

between A and B is ALWAYS part of an MST. (Prim’s thinks this way)
● Whenever you add an edge to a tree you create exactly one cycle.

Removing any edge from that cycle gives another tree!
● This observation, combined with the cycle and cut properties form the

basis of all of the greedy algorithms for MSTs.
○ greedy algorithm: chooses best known option at each point and commits, rather than

waiting for a global view of the graph before deciding

CSE 373 23SP 16

Shortest Path vs Minimum Spanning
Shortest Path Problem Minimum Spanning Tree Problem

A

B

D

E

C

3
6

2
1

4

Shortest Path Tree
● Specific start node (if you have a different start

node, that changes the whole SPT, so there are
multiple SPTs for graphs frequently)

● Keeps track of total path length

Minimum Spanning Tree
● No specific start node, since the goal is just to minimize the

edge weights sum. Often only one possible MST that has
the minimum sum

● All nodes connected
● Keeps track of cheapest edges that maintain connectivity

SPT from
Factory

MST of the
graph

Given: a directed graph G and vertices s, t
Find: the shortest path from s to t.

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can get
from any vertex of G to any other on only those edges.

B

D

E

C

3
6

2
1

4

5

8

9
10

7

A

CSE 373 23SP 17

Minimum Spanning Trees
Prim’s and Kruskal’s Algorithms

CSE 373 23SP 18

Finding an MST

Here are two ideas for finding an MST:

Think vertex-by-vertex
● Maintain a tree over a set of vertices
● Have each vertex remember the cheapest edge that could connect it to that set
● At every step, connect the vertex that can be connected the cheapest

Think edge-by-edge
● Sort edges by weight. In increasing order:

○ add it if it connects new things to each other (don’t add it if it would create
a cycle)

Prim
’s

Kruskal’s

Both ideas work!!

CSE 373 23SP 19

Dijkstra’s versus Prim’s

Dijkstra’s Algorithm
Dijkstra’s proceeds radially from its source, because it
chooses edges by path length from source

Prim’s Algorithm
Prim’s jumps around the graph (the
perimeter), because it chooses edges by
edge weight (there’s no source)

CSE 373 23SP 20

Prim’s Algorithm

Dijkstra’s
1. Start at source
2. Update distance from current to

unprocessed neighbors
3. Add closest unprocessed

neighbor to solution
4. Repeat until all vertices have been

marked processed

Algorithm idea:
1. Start at any node
2. Investigate edges that

connect unprocessed
vertices

3. Add the lightest edge
that grows connectivity
to solution

4. Repeat until all vertices
have been marked
processed

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15

Question

Which lines of Dijkstra can we
change to create our new algorithm?

CSE 373 23SP 21

Adapting Dijkstra’s: Prim’s Algorithm
primsShortestPath(G graph, V start)

 Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0
 PriorityQueue<V> perimeter; perimeter.add(start);

 while (!perimeter.isEmpty()):

 u = perimeter.removeMin()

 known.add(u)

 for each edge (u,v) to unknown v with weight w:

 oldDist = distTo.get(v) // previous smallest edge to v

 newDist = distTo.get(u) + w // is this a smaller edge to v?

 if (newDist < oldDist):

 distTo.put(u, newDist)

 edgeTo.put(u, v)

 if (perimeter.contains(v)):

 perimeter.changePriority(v, newDist)

 else:

 perimeter.add(v, newDist)

distTo.get(u) +

● Normally, Dijkstra’s checks for a
shorter path from the start.

● But MSTs don’t care about
individual paths, only the overall
weight!

● New condition: “would this be a
smaller edge to connect the
current known set to the rest of the
graph?”

X

KNOWN

3??

3

1

A

1

C
1??

B

4

CSE 373 23SP 22

Try It Out

Vertex Distance Best Edge Processed

A

B

C

D

E

F

G

-

2

4

7

(A, B)

(A, C)

(A, D)

X ✓

✓

3

50

6

(B, F) ✓

(B, E)

(B, G)

✓

2

5 .

(C, D) .

(C, E) .

✓

✓

✓

A

B

D
F

E

C

50

6

3

4

7

2

8

9
5

7

G

2

primsShortestPath(G graph, V start)

 Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0
 PriorityQueue<V> perimeter; perimeter.add(start);

 while (!perimeter.isEmpty()):

 u = perimeter.removeMin()

 known.add(u)

 for each edge (u,v) to unknown v with weight w:

 oldDist = distTo.get(v) // previous smallest edge to v

 newDist = distTo.get(u) + w // is this a smaller edge to v?

 if (newDist < oldDist):

 distTo.put(u, newDist)

 edgeTo.put(u, v)

 if (perimeter.contains(v)):

 perimeter.changePriority(v, newDist)

 else:

 perimeter.add(v, newDist)

CSE 373 23SP 23

A Different Approach

Suppose the MST on the right was produced by Prim’s

Observation: We basically choose all the smallest edges
in the entire graph (1, 2, 3, 4, 6)
● The only exception was 5. Why shouldn’t we add edge 5?
● Because adding 5 would create a cycle, and to connect A, C, & D we’d

rather choose 1 & 4 than 1 & 5 or 4 & 5.

Prim’s thinks “vertex by vertex”, but what if you think
“edge by edge” instead?
● Start with the smallest edge in the entire graph and work your way up
● Add the edge to the MST as long as it connects two new groups

(meaning don’t add any edges that would create a cycle)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Building an MST “edge by
edge” in this graph:

• Add edge 1
• Add edge 2
• Add edge 3
• Add edge 4
• Skip edge 5 (would create a

cycle)
• Add edge 6
• Finished: all vertices in the MST!

CSE 373 23SP 24

Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)

 Set(?) msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

Key Intuition: Kruskal’s keeps track of
isolated “islands” of vertices (each is a
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

CSE 373 23SP 25

Kruskal’s Algorithm

kruskalMST(G graph)

 Set(?) msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of
isolated “islands” of vertices (each is a
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

CSE 373 23SP 26

Kruskal’s Algorithm

kruskalMST(G graph)

 Set(?) msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of
isolated “islands” of vertices (each is a
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

CSE 373 23SP 27

Kruskal’s Algorithm

kruskalMST(G graph)

 Set(?) msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of
isolated “islands” of vertices (each is a
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

CSE 373 23SP 28

Kruskal’s Algorithm

kruskalMST(G graph)

 Set(?) msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

A

B

D

E
C

2
111

3
5

8

9
107

6

F

“islands”

4This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of
isolated “islands” of vertices (each is a
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

CSE 373 23SP 29

Kruskal’s Algorithm

kruskalMST(G graph)

 Set(?) msts; Set finalMST;

 initialize msts with each vertex as single-element MST

 sort all edges by weight (smallest to largest)

 for each edge (u,v) in ascending order:

 uMST = msts.find(u)

 vMST = msts.find(v)

 if (uMST != vMST):

 finalMST.add(edge (u, v))

 msts.union(uMST, vMST)

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

This “edge by edge” approach is how Kruskal’s Algorithm works!

Key Intuition: Kruskal’s keeps track of
isolated “islands” of vertices (each is a
sub-MST)

○ Start with each vertex as its own “island”
○ If an edge connects two vertices within the

same “island”, it forms a cycle! Discard it.
○ If an edge connects two vertices in different

“islands”, add it to the MST! Now those
“islands” need to be combined.

CSE 373 23SP 30

Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G)
 initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)

CSE 373 23SP 31

Try It Out

A

B

D F

E

C

3 6
2

1

4
5

8

9
10

7

KruskalMST(Graph G)
 initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)

Yes

Yes

Yes

Yes

No Cycle A,C,D,A

Yes

No Cycle A,C,E,D,A

Cycle A,D,F,B,ANo

No Cycle A,C,E,F,D,A

No Cycle C,A,B,F,C

CSE 373 23SP 32

Kruskal’s Implementation

Some lines of code there were a little sketchy.

> initialize each vertex to be its own component
> Update u and v to be in the same component

Can we use one of our data structures?

KruskalMST(Graph G)
 initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

CSE 373 23SP 33

Questions?

CSE 373 23SP 34

That’s all!

