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Warm Up - BFS

PERIMETER

bfs(Graph graph, Vertex start) {

  Queue<Vertex> perimeter = new Queue<>();

  Set<Vertex> visited = new Set<>();  

  perimeter.add(start);

  visited.add(start);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        perimeter.add(to);

        visited.add(to);

...}
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start

VISITED

9

1 2 4 53 6 8 97

1 2 4 3 5 6 8 7 9

Give a possible ordering of a BFS 
traversal of the following graph. 
Break ties between unvisited vertices 
by visiting the smaller vertex first

Slido Event #1807745
https://app.sli.do/event/rrKs
82jJK7WnGdjFa6YVvi 

https://app.sli.do/event/rrKs82jJK7WnGdjFa6YVvi
https://app.sli.do/event/rrKs82jJK7WnGdjFa6YVvi
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Announcements

● Midterm resubmissions due Wednesday May 10th
○ NO LATE SUBMISSIONS ACCEPTED

● P3 due Wednesday May 10th
● E5 due Monday 
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Shortest Path
Dijkstra’s Algorithm
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The Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t, 
how long is the shortest path from s to t? 

What edges makeup that path?

This is a little harder, but still totally 
doable! We just need a way to keep 
track of how far each node is from 
the start.
○Sounds like a job for?

Applications:
- network routing
- driving directions
- cheap flight tickets
- so many more…
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Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex 
t, how long is the shortest path from s to 

t? What edges make up that path?

This is a little harder, but still totally 
doable! We just need a way to keep 
track of how far each node is from 
the start.
○Sounds like a job for?

■ BFS!

   ...

  Map<Vertex, Edge> edgeTo = ...

  Map<Vertex, Double> distTo = ...

  edgeTo.put(start, null);

  distTo.put(start, 0.0);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        edgeTo.put(to, edge);

        distTo.put(to, distTo.get(from) + 1);

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

  return edgeTo;

}

Remember how we got to this 
point, and what layer this 

vertex is part of

The start required no edge 
to arrive at, and is on level 0

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t, 
how long is the shortest path from s to t? 

What edges makeup that path?

BFS shortest path runtime
while (|V|) {
   for (each E from current V)
}
=> O(|V| + |E|)
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BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER

   ...

  Map<Vertex, Edge> edgeTo = ...

  Map<Vertex, Double> distTo = ...

  edgeTo.put(start, null);

  distTo.put(start, 0.0);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        edgeTo.put(to, edge);

        distTo.put(to, distTo.get(from) + 1);

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

  return edgeTo;

}

EDGETO

DISTTO

The edgeTo map stores backpointers: each vertex remembers 
what vertex was used to arrive at it!

Note: this code stores visited, edgeTo, and distTo as external 
maps (only drawn on graph for convenience). Another 
implementation option: store them as fields of the nodes 
themselves

0

1

1

2

2

A B C D E
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What about the Target Vertex?
This modification on BFS didn’t mention the target 
vertex at all!

Instead, it calculated the shortest path and distance 
from start to every other vertex
○This is called the shortest path tree

■ A general concept: in this implementation, made up of distances and backpointers

Shortest path tree has all the answers!
○Length of shortest path from A to D?

■ Lookup in distTo map: 2

○What’s the shortest path from A to D?
■ Build up backwards from edgeTo map: start at D, follow backpointer to B, follow 

backpointer to A – our shortest path is A 🡪 B 🡪 D

All our shortest path algorithms will have this 
property
○ If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO

0

1

1

2

2

Shortest Path 
Tree:
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Recap: Graph Problems

EASY MEDIUM

s-t Connectivity Problem

Given source vertex s and a 
target vertex t, does there exist 

a path between s and t?

(Unweighted) Shortest Path 
Problem

Given source vertex s and a 
target vertex t, how long is the 
shortest path from s to t? What 

edges make up that path?

BFS or DFS + check if we’ve 
hit t

BFS + generate shortest 
path tree as we go

What about the Shortest 
Path Problem on a weighted 
graph?

Just like everything is Graphs, every problem is a Graph Problem

BFS and DFS are very useful tools to solve these! We’ll see plenty more.
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Next Stop  Weighted Shortest Paths
HARDER (FOR NOW)

● Suppose we want to find shortest path 
from A to C, using weight of each edge 
as “distance”

● Is BFS going to give us the right result 
here?

A

B

C

D

14.0

12.0

9000.2

1.5

start
target
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Shortest Path
Dijkstra’s Algorithm
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Dijkstra’s Algorithm

● Named after its inventor, Edsger Dijkstra (1930-2002)
○ Truly one of the “founders” of computer science
○ 1972 Turing Award
○ This algorithm is just one of his many contributions!
○ Example quote: “Computer science is no more about computers than 

astronomy is about telescopes”

● The idea: reminiscent of BFS, but adapted to handle weights
○ Grow the set of nodes whose shortest distance has been computed
○ Nodes not in the set will have a “best distance so far”
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Dijkstra’s Algorithm: Idea

● Initialization:
○ Start vertex has distance 0; all other vertices have distance ∞ 

● At each step:
○ Pick closest unknown vertex v
○ Add it to the “cloud” of known vertices
○ Update “best-so-far” distances for vertices with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOW
N

UNKNOW
N

PERIMETER

start
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dijkstraShortestPath(G graph, V start)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS, 
“known” is nodes that are 
finalized (we know their 

path)

Dijkstra’s algorithm is all 
about updating “best-so-far” 

in distTo if we find shorter 
path! Init all paths to infinite.

Order matters: always visit 
closest first!

Consider all vertices 
reachable from me: would 

getting there through me be 
a shorter path than they 
currently know about? 

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]

C D

B
A

KNOWN

PERIMETER

0

2

3 7??

2

3 5

1

start

u v

  Set known; Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0

  while (there are unknown vertices):

    let u be the closest unknown vertex

    known.add(u);
    for each edge (u,v) from u with weight w:

      oldDist = distTo.get(v)      // previous best path to v

      newDist = distTo.get(u) + w  // what if we went through u?

      if (newDist < oldDist):

        distTo.put(v, newDist)

        edgeTo.put(v, u)
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Dijkstra’s Algorithm: Key Properties

Once a vertex is marked known, 
its shortest path is known
○ Can reconstruct path by following 

back-pointers (in edgeTo map)

dijkstraShortestPath(G graph, V start)

  Set known; Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0

  while (there are unknown vertices):

    let u be the closest unknown vertex

    known.add(u)

    for each edge (u,v) to unknown v with weight w:

      oldDist = distTo.get(v)      // previous best path to v

      newDist = distTo.get(u) + w  // what if we went through u?

      if (newDist < oldDist):

        distTo.put(v, newDist)

        edgeTo.put(v, u)

 While a vertex is not known, another 
shorter path might be found
- We call this update relaxing the 

distance because it only ever 
shortens the current best path

 Going through closest vertices first 
lets us confidently say no shorter 
path will be found once known
- Because not possible to find a 

shorter path that uses a farther 
vertex we’ll consider later
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Dijkstra’s Algorithm: Runtime
dijkstraShortestPath(G graph, V start)

  Set known; Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0

  while (there are unknown vertices):

    let u be the closest unknown vertex

    known.add(u)

    for each edge (u,v) to unknown v with weight w:

      oldDist = distTo.get(v)      // previous best path to v

      newDist = distTo.get(u) + w  // what if we went through u?

      if (newDist < oldDist):

        distTo.put(v, newDist)

        edgeTo.put(v, u)

O(|V|)

come back…

How do we find this??

O(1) for HashSet

O(|E|) worst case

O(1) for HashMap

We can use an optimized structure that will tell us the “minimum” distance vertex, and let us “update 
distance” as we go…

Use a HeapMinPriorityQueue! (like the one from P3)

Important 
for P4!
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Dijkstra’s Algorithm: Runtime
dijkstraShortestPath(G graph, V start)

  Set known; Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0

  while (there are unknown vertices):

    let u be the closest unknown vertex

    known.add(u)

    for each edge (u,v) to unknown v with weight w:

      oldDist = distTo.get(v)      // previous best path to v

      newDist = distTo.get(u) + w  // what if we went through u?

      if (newDist < oldDist):

        distTo.put(v, newDist)

        edgeTo.put(v, u)

        update distance in list of unknown vertices

O(|V|)

O(|V|)

O(log|V|)

O(|E|) 

O(log|V|)

Final runtime: O(|V|log|V| + |E|log|V|)
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Dijkstra’s Algorithm: Example #1

18

Vertex Known? distTo edgeTo

A ∞

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

∞ ∞ ∞

∞

∞

∞

∞

0

start

Order Added to 
Known Set:
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1??

4??

∞

∞

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 2 A

C ≤ 1 A

D ≤ 4 A

E ∞

F ∞

G ∞

H ∞

Order Added to 
Known Set:
A
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1

4??

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ∞

G ∞

H ∞

Order Added to 
Known Set:
A, C
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4??

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ≤ 4 B

G ∞

H ∞

Order Added to 
Known Set:
A, C, B
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F ≤ 4 B

G ∞

H ∞

Order Added to 
Known Set:
A, C, B, D
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7??

1

4

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ∞

H ≤ 7 F

Order Added to 
Known Set:
A, C, B, D, F
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8??

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ≤ 8 H

H Y 7 F

Order Added to 
Known Set:
A, C, B, D, F, H
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to 
Known Set:
A, C, B, D, F, H, G
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Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to 
Known Set:
A, C, B, D, F, H, G, E
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Dijkstra’s Algorithm: Interpreting the Results
Now that we’re done, how do we get the path from A to 
E?

●Follow edgeTo backpointers!

●distTo and edgeTo make up the shortest path tree

Order Added to 
Known Set:
A, C, B, D, F, H, G, E

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F
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Review: Key Features

● Once a vertex is marked known, its shortest path is known
○ Can reconstruct path by following backpointers

● While a vertex is not known, another shorter path might be found!

● The “Order Added to Known Set” is unimportant
○ A detail about how the algorithm works (client doesn’t care)
○ Not used by the algorithm (implementation doesn’t care)
○ It is sorted by path-distance; ties are resolved “somehow”

● If we only need path to a specific vertex, can stop early once that 
vertex is known
○ Because its shortest path cannot change!
○ Return a partial shortest path tree
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Dijkstra’s Runtime

Algorithm Pieces:

1. Set all vertices distances to infinity and start node distance to 0
a. Make a map, fill it with V -> ∞ except for S -> 0 

2. Add start to 
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Greedy Algorithms

● At each step, do what seems best at that step
○ “instant gratification”
○ “make the locally optimal choice at each stage”

● Dijkstra’s is “greedy” because once a vertex is marked as “processed” 
we never revisit
○ This is why Dijkstra’s does not work with negative edge weights

Other examples of greedy algorithms are:

● Kruskal and Prim’s minimum spanning tree algorithms (next week)
● Huffman compression
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Bellman-Ford Shortest Path

● A shortest path algorithm that will work with negative edge weights
○ Will not work if a negative cycle exists- in this case no shortest path exists

● Not a greedy algorithm
● Originally proposed by Alfonso Shimbel, then published by Edward F. Moore 

(Moore’s Finite State Machine, not of Moore’s law), then republished by Lester 
Ford Jr and finally named after Richard Bellman (invented dynamic programming) 
who’s final publication built off of Ford’s
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Bellman-Ford Basics

● There can be at most |V| - 1 edges in our shortest path
○ If there are |V| or more edges in a path that means there’s a cycle/repeated 

Vertex
● Run |V| - 1 iterations of shortest path analysis through the graph

○ This means we will repeatedly revisit the “distance from” selected per vertex 
● Look at each vertex’s outgoing edges in each iteration
● It is slower than Dijkstra’s for the same problem because it will 

revisit previously assessed vertices
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Bellman-Ford Example

33

Vertex distTo edgeTo

S 0

A ∞

B ∞

C ∞

D ∞

E ∞

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

∞ ∞

∞

∞

∞

0
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Bellman-Ford Example

34

Vertex distTo edgeTo

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 1 - for each Vertex’s outgoing edge, does that 
give us a shorter way to get to a new vertex?
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Bellman-Ford Example

35

Vertex distTo edgeTo

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 2 - re-examining outgoing edges, can we improve 
the distance to any given Vertex?

5 D

8 D

* Because a distance to D is 
known by the time we 
process D we can include 
D’s outgoing edges for 
consideration
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Bellman-Ford Example

36

Vertex distTo edgeTo

S 0 -

A 5 D

B 10 C

C 8 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 3 - repeat!

7 * With a shortened distance to A 
from iteration 2 we can improve 
the distance to C

5

* With a shortened distance to C 
from this iteration we can improve 
distance to B
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Bellman-Ford Example

37

Vertex distTo edgeTo

S 0 -

A 5 D

B 5 C

C 7 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 4 - repeat!

No changes!
this means we can stop early
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Questions?
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That’s all!
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Appendix
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Graph problems

Some well known graph problems and their common names:
● s-t Path. Is there a path between vertices s and t?
● Connectivity. Is the graph connected? 
● Biconnectivity. Is there a vertex whose removal disconnects the 

graph? 
● Shortest s-t Path. What is the shortest path between vertices s and 

t? 
● Cycle Detection. Does the graph contain any cycles?
● Euler Tour. Is there a cycle that uses every edge exactly once? 
● Hamilton Tour. Is there a cycle that uses every vertex exactly once?
● Planarity. Can you draw the graph on paper with no crossing 

edges? 
● Isomorphism. Are two graphs the same graph (in disguise)?

Graph problems are among the most mathematically rich areas of 
CS theory!

HANNAH TANG 
20WI
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s-t path Problem
●s-t path problem

○ Given source vertex s and a target vertex t, does there 
exist a path between s and t?

●Why does this problem matter?  Some possible context:
❑  real life maps and trip planning – can we get from one location (vertex) 

to another location (vertex) given the current available roads (edges)
❑  family trees and checking ancestry – are two people (vertices) related 

by some common ancestor (edges for direct parent/child relationships) 
❑  game states (Artificial Intelligence) can you win the game from the 

current vertex (think: current board position)? Are there moves (edges) 
you can take to get to the vertex that represents an already won game?

42

1

2

3

4

5

6

7

8

0
s

t
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s-t path Problem
● s-t path problem

○ Given source vertex s and a target vertex t, does there exist a path between s and t?

43

1

2

3

4

5

6

7

8

0
s

t

❖ What’s the answer for this graph on the left, and 
how did we get that answer as humans?

❖ We can see there’s edges that are visually in between s 
and t, and we can try out an example path and make 
sure that by traversing that path you can get from s to t.

❖ We know that doesn’t scale that well though, so now 
let’s try to define a more algorithmic (comprehensive) 
way to find these paths. The main idea is: starting from 
the specified s, try traversing through every single 
possible path possible that’s not redundant to see if it 
could lead to t.

traversals are really important to solving this 
problem / problems in general, so slight 
detour to talk about them, we’ll come back to 
this though
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Graph traversals: DFS

●Depth First Search - a traversal on graphs (or on trees since those are also graphs) where 
you traverse “deep nodes” before all the shallow ones

●High-level DFS: you go as far as you can down one path till you hit a dead end (no 
neighbors are still undiscovered or you have no neighbors).  Once you hit a dead end, you 
backtrack / undo until you find some options/edges that you haven’t actually tried yet. 

Kind of like wandering a 
maze – if you get stuck at a 
dead end (since you 
physically have to go and 
try it out to know it’s a dead 
end), trace your steps 
backwards towards your 
last decision and when you 
get back there, choose a 
different option than you 
did before.

one valid DFS traversal: 10, 5, 3, 2, 4, 8, 7,6, 9, 15, 12, 14, 18
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Graph traversals: BFS
●Breadth First Search - a traversal on graphs (or on trees since those are also graphs) where you traverse level by level. So in 

this one we’ll get to all the shallow nodes before any “deep nodes”.  

●Intuitive ways to think about BFS:

●- opposite way of traversing compared to DFS

●- a sound wave spreading from a starting point, going outwards in all directions possible.

●- mold on a piece of food spreading outwards so that it eventually covers the whole surface

one valid BFS traversal: 10, 5, 15, 3, 8, 12, 18, 2, 4, 7, 9, 14, 6



CSE 373 23SP  46

Graph traversals: BFS and DFS on more graphs

●Take 2 minutes and try to come 
up with two possible traversal 
orderings starting with the 0 
node:

-a BFS ordering (ordering within 
each layer doesn’t matter / any 
ordering is valid)

-a DFS ordering (ordering which 
path you choose next at any 
point doesn’t matter / any is 
valid as long as you haven’t 
explored it before)

●@ordering choices will be more 
stable when we have code in 
front of us, but not the focus / 
point of the traversals so don’t 
worry about it

In DFS, you go as far as you can down one path till you hit a dead 
end (no neighbors are still undiscovered or you have no 
neighbors).  Once you hit a dead end, you backtrack / undo until 
you find some options/edges that you haven’t actually tried yet. 

In BFS, you traverse level by level
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Graph traversals: BFS and DFS on more graphs

https://visualgo.net/en/dfsbfs

-click on draw graph to create your 
own graphs and run BFS/DFS on 
them!

-check out visualgo.net for more 
really cool interactive 
visualizations

-or do your own googling – there 
are a lot of cool visualizations out 
there ☺!

https://visualgo.net/en/dfsbfs
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●Small note: for this s-t problem, we didn’t really need the power of 
BFS in particular, just some way of looping through the graph starting 
at a particular point and seeing everything it was connected to.  So we 
could have just as easily used DFS.

●There are plenty of unique applications of both, however, and we’ll 
cover some of them in this course – for a more comprehensive list, 
feel free to google or check out resources like:

●- 
https://www.geeksforgeeks.org/applications-of-breadth-first-traver
sal/

●- 
https://www.geeksforgeeks.org/applications-of-depth-first-search/

https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
https://www.geeksforgeeks.org/applications-of-depth-first-search/

