
 1CSE 373 23SP

Lecture 17: Shortest Path CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up - BFS

PERIMETER

bfs(Graph graph, Vertex start) {

 Queue<Vertex> perimeter = new Queue<>();

 Set<Vertex> visited = new Set<>();

 perimeter.add(start);

 visited.add(start);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 perimeter.add(to);

 visited.add(to);

...}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 53 6 8 97

1 2 4 3 5 6 8 7 9

Give a possible ordering of a BFS
traversal of the following graph.
Break ties between unvisited vertices
by visiting the smaller vertex first

Slido Event #1807745
https://app.sli.do/event/rrKs
82jJK7WnGdjFa6YVvi

https://app.sli.do/event/rrKs82jJK7WnGdjFa6YVvi
https://app.sli.do/event/rrKs82jJK7WnGdjFa6YVvi

CSE 373 23SP 3

Announcements

● Midterm resubmissions due Wednesday May 10th
○ NO LATE SUBMISSIONS ACCEPTED

● P3 due Wednesday May 10th
● E5 due Monday

CSE 373 23SP 4

Shortest Path
Dijkstra’s Algorithm

CSE 373 23SP 5

The Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t,
how long is the shortest path from s to t?

What edges makeup that path?

This is a little harder, but still totally
doable! We just need a way to keep
track of how far each node is from
the start.
○Sounds like a job for?

Applications:
- network routing
- driving directions
- cheap flight tickets
- so many more…

CSE 373 23SP 6

Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex
t, how long is the shortest path from s to

t? What edges make up that path?

This is a little harder, but still totally
doable! We just need a way to keep
track of how far each node is from
the start.
○Sounds like a job for?

■ BFS!

 ...

 Map<Vertex, Edge> edgeTo = ...

 Map<Vertex, Double> distTo = ...

 edgeTo.put(start, null);

 distTo.put(start, 0.0);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 edgeTo.put(to, edge);

 distTo.put(to, distTo.get(from) + 1);

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

 return edgeTo;

}

Remember how we got to this
point, and what layer this

vertex is part of

The start required no edge
to arrive at, and is on level 0

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t,
how long is the shortest path from s to t?

What edges makeup that path?

BFS shortest path runtime
while (|V|) {
 for (each E from current V)
}
=> O(|V| + |E|)

CSE 373 23SP 7

BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER

 ...

 Map<Vertex, Edge> edgeTo = ...

 Map<Vertex, Double> distTo = ...

 edgeTo.put(start, null);

 distTo.put(start, 0.0);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 edgeTo.put(to, edge);

 distTo.put(to, distTo.get(from) + 1);

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

 return edgeTo;

}

EDGETO

DISTTO

The edgeTo map stores backpointers: each vertex remembers
what vertex was used to arrive at it!

Note: this code stores visited, edgeTo, and distTo as external
maps (only drawn on graph for convenience). Another
implementation option: store them as fields of the nodes
themselves

0

1

1

2

2

A B C D E

CSE 373 23SP 8

What about the Target Vertex?
This modification on BFS didn’t mention the target
vertex at all!

Instead, it calculated the shortest path and distance
from start to every other vertex
○This is called the shortest path tree

■ A general concept: in this implementation, made up of distances and backpointers

Shortest path tree has all the answers!
○Length of shortest path from A to D?

■ Lookup in distTo map: 2

○What’s the shortest path from A to D?
■ Build up backwards from edgeTo map: start at D, follow backpointer to B, follow

backpointer to A – our shortest path is A 🡪 B 🡪 D

All our shortest path algorithms will have this
property
○ If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO

0

1

1

2

2

Shortest Path
Tree:

CSE 373 23SP 9

Recap: Graph Problems

EASY MEDIUM

s-t Connectivity Problem

Given source vertex s and a
target vertex t, does there exist

a path between s and t?

(Unweighted) Shortest Path
Problem

Given source vertex s and a
target vertex t, how long is the
shortest path from s to t? What

edges make up that path?

BFS or DFS + check if we’ve
hit t

BFS + generate shortest
path tree as we go

What about the Shortest
Path Problem on a weighted
graph?

Just like everything is Graphs, every problem is a Graph Problem

BFS and DFS are very useful tools to solve these! We’ll see plenty more.

CSE 373 23SP 10

Next Stop Weighted Shortest Paths
HARDER (FOR NOW)

● Suppose we want to find shortest path
from A to C, using weight of each edge
as “distance”

● Is BFS going to give us the right result
here?

A

B

C

D

14.0

12.0

9000.2

1.5

start
target

CSE 373 23SP 11

Shortest Path
Dijkstra’s Algorithm

CSE 373 23SP 12

Dijkstra’s Algorithm

● Named after its inventor, Edsger Dijkstra (1930-2002)
○ Truly one of the “founders” of computer science
○ 1972 Turing Award
○ This algorithm is just one of his many contributions!
○ Example quote: “Computer science is no more about computers than

astronomy is about telescopes”

● The idea: reminiscent of BFS, but adapted to handle weights
○ Grow the set of nodes whose shortest distance has been computed
○ Nodes not in the set will have a “best distance so far”

CSE 373 23SP 13

Dijkstra’s Algorithm: Idea

● Initialization:
○ Start vertex has distance 0; all other vertices have distance ∞

● At each step:
○ Pick closest unknown vertex v
○ Add it to the “cloud” of known vertices
○ Update “best-so-far” distances for vertices with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOW
N

UNKNOW
N

PERIMETER

start

CSE 373 23SP 14

dijkstraShortestPath(G graph, V start)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS,
“known” is nodes that are
finalized (we know their

path)

Dijkstra’s algorithm is all
about updating “best-so-far”

in distTo if we find shorter
path! Init all paths to infinite.

Order matters: always visit
closest first!

Consider all vertices
reachable from me: would

getting there through me be
a shorter path than they
currently know about?

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]

C D

B
A

KNOWN

PERIMETER

0

2

3 7??

2

3 5

1

start

u v

 Set known; Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0

 while (there are unknown vertices):

 let u be the closest unknown vertex

 known.add(u);
 for each edge (u,v) from u with weight w:

 oldDist = distTo.get(v) // previous best path to v

 newDist = distTo.get(u) + w // what if we went through u?

 if (newDist < oldDist):

 distTo.put(v, newDist)

 edgeTo.put(v, u)

CSE 373 23SP 15

Dijkstra’s Algorithm: Key Properties

Once a vertex is marked known,
its shortest path is known
○ Can reconstruct path by following

back-pointers (in edgeTo map)

dijkstraShortestPath(G graph, V start)

 Set known; Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0

 while (there are unknown vertices):

 let u be the closest unknown vertex

 known.add(u)

 for each edge (u,v) to unknown v with weight w:

 oldDist = distTo.get(v) // previous best path to v

 newDist = distTo.get(u) + w // what if we went through u?

 if (newDist < oldDist):

 distTo.put(v, newDist)

 edgeTo.put(v, u)

 While a vertex is not known, another
shorter path might be found
- We call this update relaxing the

distance because it only ever
shortens the current best path

 Going through closest vertices first
lets us confidently say no shorter
path will be found once known
- Because not possible to find a

shorter path that uses a farther
vertex we’ll consider later

CSE 373 23SP 16

Dijkstra’s Algorithm: Runtime
dijkstraShortestPath(G graph, V start)

 Set known; Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0

 while (there are unknown vertices):

 let u be the closest unknown vertex

 known.add(u)

 for each edge (u,v) to unknown v with weight w:

 oldDist = distTo.get(v) // previous best path to v

 newDist = distTo.get(u) + w // what if we went through u?

 if (newDist < oldDist):

 distTo.put(v, newDist)

 edgeTo.put(v, u)

O(|V|)

come back…

How do we find this??

O(1) for HashSet

O(|E|) worst case

O(1) for HashMap

We can use an optimized structure that will tell us the “minimum” distance vertex, and let us “update
distance” as we go…

Use a HeapMinPriorityQueue! (like the one from P3)

Important
for P4!

CSE 373 23SP 17

Dijkstra’s Algorithm: Runtime
dijkstraShortestPath(G graph, V start)

 Set known; Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0

 while (there are unknown vertices):

 let u be the closest unknown vertex

 known.add(u)

 for each edge (u,v) to unknown v with weight w:

 oldDist = distTo.get(v) // previous best path to v

 newDist = distTo.get(u) + w // what if we went through u?

 if (newDist < oldDist):

 distTo.put(v, newDist)

 edgeTo.put(v, u)

 update distance in list of unknown vertices

O(|V|)

O(|V|)

O(log|V|)

O(|E|)

O(log|V|)

Final runtime: O(|V|log|V| + |E|log|V|)

CSE 373 23SP 18

Dijkstra’s Algorithm: Example #1

18

Vertex Known? distTo edgeTo

A ∞

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

∞ ∞ ∞

∞

∞

∞

∞

0

start

Order Added to
Known Set:

CSE 373 23SP 19

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1??

4??

∞

∞

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 2 A

C ≤ 1 A

D ≤ 4 A

E ∞

F ∞

G ∞

H ∞

Order Added to
Known Set:
A

CSE 373 23SP 20

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2?? ∞ ∞

1

4??

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B ≤ 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ∞

G ∞

H ∞

Order Added to
Known Set:
A, C

CSE 373 23SP 21

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4??

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ≤ 4 B

G ∞

H ∞

Order Added to
Known Set:
A, C, B

CSE 373 23SP 22

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4?? ∞

1

4

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F ≤ 4 B

G ∞

H ∞

Order Added to
Known Set:
A, C, B, D

CSE 373 23SP 23

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7??

1

4

∞

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ∞

H ≤ 7 F

Order Added to
Known Set:
A, C, B, D, F

CSE 373 23SP 24

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8??

12??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ≤ 8 H

H Y 7 F

Order Added to
Known Set:
A, C, B, D, F, H

CSE 373 23SP 25

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11??

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to
Known Set:
A, C, B, D, F, H, G

CSE 373 23SP 26

Dijkstra’s Algorithm: Example #1

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to
Known Set:
A, C, B, D, F, H, G, E

CSE 373 23SP 27

Dijkstra’s Algorithm: Interpreting the Results
Now that we’re done, how do we get the path from A to
E?

●Follow edgeTo backpointers!

●distTo and edgeTo make up the shortest path tree

Order Added to
Known Set:
A, C, B, D, F, H, G, E

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

2 4 7

1

4

8

11

0

start

Vertex Known? distTo edgeTo

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

CSE 373 23SP 28

Review: Key Features

● Once a vertex is marked known, its shortest path is known
○ Can reconstruct path by following backpointers

● While a vertex is not known, another shorter path might be found!

● The “Order Added to Known Set” is unimportant
○ A detail about how the algorithm works (client doesn’t care)
○ Not used by the algorithm (implementation doesn’t care)
○ It is sorted by path-distance; ties are resolved “somehow”

● If we only need path to a specific vertex, can stop early once that
vertex is known
○ Because its shortest path cannot change!
○ Return a partial shortest path tree

CSE 373 23SP 29

Dijkstra’s Runtime

Algorithm Pieces:

1. Set all vertices distances to infinity and start node distance to 0
a. Make a map, fill it with V -> ∞ except for S -> 0

2. Add start to

CSE 373 23SP 30

Greedy Algorithms

● At each step, do what seems best at that step
○ “instant gratification”
○ “make the locally optimal choice at each stage”

● Dijkstra’s is “greedy” because once a vertex is marked as “processed”
we never revisit
○ This is why Dijkstra’s does not work with negative edge weights

Other examples of greedy algorithms are:

● Kruskal and Prim’s minimum spanning tree algorithms (next week)
● Huffman compression

CSE 373 23SP 31

Bellman-Ford Shortest Path

● A shortest path algorithm that will work with negative edge weights
○ Will not work if a negative cycle exists- in this case no shortest path exists

● Not a greedy algorithm
● Originally proposed by Alfonso Shimbel, then published by Edward F. Moore

(Moore’s Finite State Machine, not of Moore’s law), then republished by Lester
Ford Jr and finally named after Richard Bellman (invented dynamic programming)
who’s final publication built off of Ford’s

CSE 373 23SP 32

Bellman-Ford Basics

● There can be at most |V| - 1 edges in our shortest path
○ If there are |V| or more edges in a path that means there’s a cycle/repeated

Vertex
● Run |V| - 1 iterations of shortest path analysis through the graph

○ This means we will repeatedly revisit the “distance from” selected per vertex
● Look at each vertex’s outgoing edges in each iteration
● It is slower than Dijkstra’s for the same problem because it will

revisit previously assessed vertices

CSE 373 23SP 33

Bellman-Ford Example

33

Vertex distTo edgeTo

S 0

A ∞

B ∞

C ∞

D ∞

E ∞

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

∞ ∞

∞

∞

∞

0

CSE 373 23SP 34

Bellman-Ford Example

34

Vertex distTo edgeTo

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 1 - for each Vertex’s outgoing edge, does that
give us a shorter way to get to a new vertex?

CSE 373 23SP 35

Bellman-Ford Example

35

Vertex distTo edgeTo

S 0 -

A 10 S

B 10 C

C 12 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 2 - re-examining outgoing edges, can we improve
the distance to any given Vertex?

5 D

8 D

* Because a distance to D is
known by the time we
process D we can include
D’s outgoing edges for
consideration

CSE 373 23SP 36

Bellman-Ford Example

36

Vertex distTo edgeTo

S 0 -

A 5 D

B 10 C

C 8 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 3 - repeat!

7 * With a shortened distance to A
from iteration 2 we can improve
the distance to C

5

* With a shortened distance to C
from this iteration we can improve
distance to B

CSE 373 23SP 37

Bellman-Ford Example

37

Vertex distTo edgeTo

S 0 -

A 5 D

B 5 C

C 7 A

D 9 E

E 8 A

start S A

E

D

B

C

10 1

2
-2

-1
1

8
-4

10 10

9

8

12

0

Iteration 4 - repeat!

No changes!
this means we can stop early

CSE 373 23SP 38

Questions?

CSE 373 23SP 39

That’s all!

CSE 373 23SP 40

Appendix

CSE 373 23SP 41

Graph problems

Some well known graph problems and their common names:
● s-t Path. Is there a path between vertices s and t?
● Connectivity. Is the graph connected?
● Biconnectivity. Is there a vertex whose removal disconnects the

graph?
● Shortest s-t Path. What is the shortest path between vertices s and

t?
● Cycle Detection. Does the graph contain any cycles?
● Euler Tour. Is there a cycle that uses every edge exactly once?
● Hamilton Tour. Is there a cycle that uses every vertex exactly once?
● Planarity. Can you draw the graph on paper with no crossing

edges?
● Isomorphism. Are two graphs the same graph (in disguise)?

Graph problems are among the most mathematically rich areas of
CS theory!

HANNAH TANG
20WI

CSE 373 23SP 42

s-t path Problem
●s-t path problem

○ Given source vertex s and a target vertex t, does there
exist a path between s and t?

●Why does this problem matter? Some possible context:
❑ real life maps and trip planning – can we get from one location (vertex)

to another location (vertex) given the current available roads (edges)
❑ family trees and checking ancestry – are two people (vertices) related

by some common ancestor (edges for direct parent/child relationships)
❑ game states (Artificial Intelligence) can you win the game from the

current vertex (think: current board position)? Are there moves (edges)
you can take to get to the vertex that represents an already won game?

42

1

2

3

4

5

6

7

8

0
s

t

CSE 373 23SP 43

s-t path Problem
● s-t path problem

○ Given source vertex s and a target vertex t, does there exist a path between s and t?

43

1

2

3

4

5

6

7

8

0
s

t

❖ What’s the answer for this graph on the left, and
how did we get that answer as humans?

❖ We can see there’s edges that are visually in between s
and t, and we can try out an example path and make
sure that by traversing that path you can get from s to t.

❖ We know that doesn’t scale that well though, so now
let’s try to define a more algorithmic (comprehensive)
way to find these paths. The main idea is: starting from
the specified s, try traversing through every single
possible path possible that’s not redundant to see if it
could lead to t.

traversals are really important to solving this
problem / problems in general, so slight
detour to talk about them, we’ll come back to
this though

CSE 373 23SP 44

Graph traversals: DFS

●Depth First Search - a traversal on graphs (or on trees since those are also graphs) where
you traverse “deep nodes” before all the shallow ones

●High-level DFS: you go as far as you can down one path till you hit a dead end (no
neighbors are still undiscovered or you have no neighbors). Once you hit a dead end, you
backtrack / undo until you find some options/edges that you haven’t actually tried yet.

Kind of like wandering a
maze – if you get stuck at a
dead end (since you
physically have to go and
try it out to know it’s a dead
end), trace your steps
backwards towards your
last decision and when you
get back there, choose a
different option than you
did before.

one valid DFS traversal: 10, 5, 3, 2, 4, 8, 7,6, 9, 15, 12, 14, 18

CSE 373 23SP 45

Graph traversals: BFS
●Breadth First Search - a traversal on graphs (or on trees since those are also graphs) where you traverse level by level. So in

this one we’ll get to all the shallow nodes before any “deep nodes”.

●Intuitive ways to think about BFS:

●- opposite way of traversing compared to DFS

●- a sound wave spreading from a starting point, going outwards in all directions possible.

●- mold on a piece of food spreading outwards so that it eventually covers the whole surface

one valid BFS traversal: 10, 5, 15, 3, 8, 12, 18, 2, 4, 7, 9, 14, 6

CSE 373 23SP 46

Graph traversals: BFS and DFS on more graphs

●Take 2 minutes and try to come
up with two possible traversal
orderings starting with the 0
node:

-a BFS ordering (ordering within
each layer doesn’t matter / any
ordering is valid)

-a DFS ordering (ordering which
path you choose next at any
point doesn’t matter / any is
valid as long as you haven’t
explored it before)

●@ordering choices will be more
stable when we have code in
front of us, but not the focus /
point of the traversals so don’t
worry about it

In DFS, you go as far as you can down one path till you hit a dead
end (no neighbors are still undiscovered or you have no
neighbors). Once you hit a dead end, you backtrack / undo until
you find some options/edges that you haven’t actually tried yet.

In BFS, you traverse level by level

CSE 373 23SP 47

Graph traversals: BFS and DFS on more graphs

https://visualgo.net/en/dfsbfs

-click on draw graph to create your
own graphs and run BFS/DFS on
them!

-check out visualgo.net for more
really cool interactive
visualizations

-or do your own googling – there
are a lot of cool visualizations out
there ☺!

https://visualgo.net/en/dfsbfs

CSE 373 23SP 48

●Small note: for this s-t problem, we didn’t really need the power of
BFS in particular, just some way of looping through the graph starting
at a particular point and seeing everything it was connected to. So we
could have just as easily used DFS.

●There are plenty of unique applications of both, however, and we’ll
cover some of them in this course – for a more comprehensive list,
feel free to google or check out resources like:

●-
https://www.geeksforgeeks.org/applications-of-breadth-first-traver
sal/

●-
https://www.geeksforgeeks.org/applications-of-depth-first-search/

https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
https://www.geeksforgeeks.org/applications-of-depth-first-search/

