
 1CSE 373 23SP

Lecture 17: Graph Traversals CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

How would you transform the following scenario into a graph?

You are creating a graph representing a brand-new social media network. Each
profile has both the option to “friend” another user or to “follow” another user. When
”friend” is selected the other profile is asked for permission, and if given the two
profiles will link to one another. If “follow” is selected then no permission is asked,
but the recipient will not connect to the follower. Answer the following questions
about the graph design:

What are the vertices?

What are the edges?

Undirected or directed edges?

Weighted or unweighted edges?

Profiles

Follows and friendships

Directed

Unweighted

Slido Event #1608638
https://app.sli.do/event/bqT
zak53Lu9msB67Q72djQ

https://app.sli.do/event/bqTzak53Lu9msB67Q72djQ
https://app.sli.do/event/bqTzak53Lu9msB67Q72djQ

CSE 373 23SP 3

Warm Up

How would you transform the following scenario into a graph?

You are going to a music festival and are trying to plan the perfect schedule so you
can catch all of your favorite artists. You know what time each act starts and how
long it will be, you can only get into an act if you get there before it starts and you can
only leave an act after it ends.

Answer the following questions about the graph design:

What are the vertices?

What are the edges?

Undirected or directed?

Weighted or unweighted?

Artists (aka each act/performance)

Possible choices for the next act

Directed

Unweighted

CSE 373 23SP 4

Announcements
● Midterm Grades released!

○ You will see the points you got per question but not the specific rubric items applied
○ Instead you can see the rubric we used and some hints for how to get full credit in this

document so you can assess your own answers
○ The resubmission will be entirely online through Gradescope

■ You have the choice per question to submit a new answer, if you do not want to resubmit simply enter “skip”
■ This is a “no risk” resubmission, we will take the greater of your two scores per question to make your resubmission grade
■ Your final midterm grade will be the average of your two scores
■ Please put all questions about the resubmission as a private EdBoard post
■ You can use the internet, your notes, conceptual conversations with one another and with the course staff to formulate

your new answers
■ We will open both the paper and the digital midterm submissions for regrade requests after all grades have been

released

CSE 373 23SP 5

Graph Traversals
Topological Sort
Shortest Path

CSE 373 23SP 6

s-t Connectivity Problem

Try to come up with an algorithm for
connected(s, t)

s-t Connectivity Problem

Given source vertex s and a target vertex t,
does there exist a path between s and t?

1

2

3

4

5

6

7

8

0s
t

-We can use recursion: if a neighbor of s is
connected to t, that means s is also
connected to t!

CSE 373 23SP 7

s-t Connectivity Problem: Proposed Solution

connected(Vertex s, Vertex t) {
 if (s == t) {
 return true;
 } else {
 for (Vertex n : s.neighbors) {
 if (connected(n, t)) {
 return true;
 }
 }
 return false;
 }
}

1

2

3

4

5

6

7

8

0s
t

CSE 373 23SP 8

What’s wrong with this proposal?

Does 0 == 7? No; if(connected(1, 7) return true;
Does 1 == 7? No; if(connected(0, 7) return true;
Does 0 == 7?

connected(Vertex s, Vertex t) {
 if (s == t) {
 return true;
 } else {
 for (Vertex n : s.neighbors) {
 if (connected(n, t)) {
 return true;
 }
 }
 return false;
 }
}

1

2

3

4

5

6

7

8

0s
t

CSE 373 23SP 9

s-t Connectivity Problem: Better Solution

Solution: Mark each node as visited!

Set<Vertex> visited; // assume global
connected(Vertex s, Vertex t) {
 if (s == t) {
 return true;
 } else {
 visited.add(s);
 for (Vertex n : s.neighbors) {
 if (!visited.contains(n)) {
 if (connected(n, t)) {
 return true;
 }
 }
 }
 return false;
 }
}

This general approach for crawling
through a graph is going to be the
basis for a LOT of algorithms!

1

2

3

4

5

6

7

8

0s
t

CSE 373 23SP 10

Set<Vertex> visited; // assume global

connected(Vertex s, Vertex t) {
 if (s == t) {
 return true;
 } else {
 visited.add(s);
 for (Vertex n : s.neighbors) {
 if (!visited.contains(n)) {
 if (connected(n, t)) {
 return true;
 }
 }
 }
 return false;
 }
}

Recursive Depth-First Search (DFS)
What order does this algorithm use to visit nodes?

- Assume order of s.neighbors is arbitrary!
• It will explore one option “all the way down” before

coming back to try other options
- Many possible orderings: {0, 1, 2, 5, 6, 9, 7, 8, 4, 3} or

{0, 1, 4, 3, 2, 5, 8, 6, 7, 9} both possible

1

2

3

4

5
6

7

8

s

VISITED

9

• We call this approach a depth-first search (DFS)

CSE 373 23SP 11

Set<Vertex> visited; // assume global

connected(Vertex s, Vertex t) {
 if (s == t) {
 return true;
 } else {
 visited.add(s);
 for (Vertex n : s.neighbors) {
 if (!visited.contains(n)) {
 if (connected(n, t)) {
 return true;
 }
 }
 }
 return false;
 }
}

1

2 3

4

5 8

0s

CSE 143 Review traversing a
binary tree depth-first has 3
options:

- Pre-order: visit node before
its children

- In-order: visit node between
its children

- Post-order: visit node after its
children

VISITED

Aside Tree Traversals
We could also apply this code to a tree (recall: a type of graph) to do a
depth-first search on it

The difference between
these orderings is when
we “process” the root –
all are DFS!

CSE 373 23SP 12

This is our goal, but how do we translate into code?
• Key observation: recursive calls interrupted s.neighbors

loop to immediately process children
• For BFS, instead we want to complete that loop before

processing children
• Recursion isn’t the answer! Need a data structure to

”queue up” children…

Breadth-First Search (BFS)
Suppose we want to visit closer nodes first, instead of following one
choice all the way to the end
● Just like level-order traversal of a tree, now generalized to any graph

1

2

3

4

5
6

7

8

s

VISITED

9

We call this approach a breadth-first search (BFS)

for (Vertex n : s.neighbors) {

0

1

2

3

4

• Explore “layer by layer”

CSE 373 23SP 13

BFS Implementation
bfs(Graph graph, Vertex start) {

Our extra data structure! Will
keep track of “outer edge” of

nodes still to explore

Let’s make this a bit more
realistic and add a Graph

Kick off the algorithm by
adding start to perimeter

1

2

3

4

5
6

7

8

9start

Grab one element at a time
from the perimeter

Look at all that
element’s children

Add new ones to
perimeter!

Queue<Vertex> perimeter = new Queue<>();

 Set<Vertex> visited = new Set<>();

 perimeter.add(start);

 visited.add(start);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();
 if (!visited.contains(to)) {

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

}

CSE 373 23SP 14

BFS Implementation: In Action
PERIMETER

bfs(Graph graph, Vertex start) {

 Queue<Vertex> perimeter = new Queue<>();

 Set<Vertex> visited = new Set<>();

 perimeter.add(start);

 visited.add(start);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

CSE 373 23SP 15

0

1

2

3

4

BFS Intuition: Why Does it Work?
PERIMETER

bfs(Graph graph, Vertex start) {

 Queue<Vertex> perimeter = new Queue<>();

 Set<Vertex> visited = new Set<>();

 perimeter.add(start);

 visited.add(start);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7

• Properties of a queue exactly what gives us this
incredibly cool behavior

• As long as we explore an entire layer before
moving on (and we will, with a queue) the next
layer will be fully built up and waiting for us by
the time we finish!

• Keep going until perimeter is empty

CSE 373 23SP 16

BFS’s Evil Twin: DFS!
bfs(Graph graph, Vertex start) {

 Queue<Vertex> perimeter = new Queue<>();

 Set<Vertex> visited = new Set<>();

 perimeter.add(start);

 visited.add(start);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

}

dfs(Graph graph, Vertex start) {

 Stack<Vertex> perimeter = new Stack<>();

 Set<Vertex> visited = new Set<>();

 perimeter.add(start);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

if (!visted.contains(from)) {

 for (Edge edge:graph.edgesFrom(from)) {

 Vertex to = edge.to();

perimeter.add(to)

 }

 visited.add(from);

 }

 }

}

In DFS we can’t immediately add a node as
“visited”. We need to make sure we are only
marking the node when it is popped.

Change Queue for order to
process neighbors to a

Stack

CSE 373 23SP 17

Recap: Graph Traversals
We’ve seen two approaches for ordering a graph traversal

BFS and DFS are just techniques for iterating! (think: for loop over an array)
○Need to add code that actually processes something to solve a problem
○A lot of interview problems on graphs can be solved with modifications on top of BFS or DFS!

Very worth being comfortable with the pseudocode ☺

BFS
(Iterative)

• Explore layer-by-layer: examine every node at
a certain distance from start, then examine
nodes that are one level farther

• Uses a queue!

DFS
(Iterative)

• Follow a “choice” all the way to the end, then
come back to revisit other choices

• Uses a stack!

DFS
(Recursive) Be careful using this – on huge graphs, might overflow the call stack

Let’s Practice
Now!

CSE 373 23SP 18

Using BFS for the s-t Connectivity Problem

s-t Connectivity Problem

Given source vertex s and a target vertex
t, does there exist a path between s and

t?

stCon(Graph graph, Vertex start, Vertex t) {

 Queue<Vertex> perimeter = new Queue<>();

 Set<Vertex> visited = new Set<>();

 perimeter.add(start);

 visited.add(start);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 if (from == t) { return true; }

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

 return false;

}

BFS is a great building block – all
we have to do is check each node
to see if we’ve reached t!
○Note: we’re not using any specific

properties of BFS here, we just needed a
traversal. DFS would also work.

CSE 373 23SP 19

Graph Traversals
Topological Sort
Shortest Path

CSE 373 23SP 20

Topological Sort

A topological sort of a directed acyclic graph G
is an ordering of the nodes, where for every
edge in the graph, the origin appears before
the destination in the ordering

Intuition: a “dependency graph”
○An edge (u, v) means u must happen before v
○A topological sort of a dependency graph gives an

ordering that respects dependencies

Applications:
○Graduating
○Compiling multiple Java files
○Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological
Sort:

With original edges for
reference:

A B C

Input:

CSE 373 23SP 21

Ordering Dependencies

●Given a Directed Acyclic Graph(DAG) G, where we have an edge from u to v if
u must happen before v.

●We can only do things one at a time, can we find an order that respects
dependencies?

Given: a directed graph G
Find: an ordering of the vertices so all edges go from left to right (all
the dependency arrows are satisfied and the vertices can be
processed left to right with no problems) .

Topological Sort (aka Topological Ordering)

CSE 373 23SP 22

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the ordering.
More generally, if the only incoming edges are from vertices already in the ordering, it’s safe to
add.

0 1

2

1

1

A C B D E

0

10

0

0

CSE 373 23SP 23

Problem 1: Ordering Dependencies

Today’s (first) problem: Given a bunch of courses with prerequisites, find an
order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

CSE 373 23SP 24

Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417

CSE 373 23SP 25

DIRECTED ACYCLIC
GRAPH

Can We Always Topo Sort a Graph?
Can you topologically sort this graph?

What’s the difference between this graph and our first graph?

A graph has a topological ordering if it is a DAG
○But a DAG can have multiple orderings

CSE 143

CSE 373

CSE 417

🤔 Where do I
start?

Where do I end?
🤔

MATH 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

No 😭

• A directed graph without
any cycles

• Edges may or may not be
weighted

CSE 373 23SP 26

Topological Sort Pseudocode

toposort(Graph graph) {

 Queue<Vertex> perimeter = new Queue<>();

 Set<Vertex> visited = new Set<>();

 Map<Vertex, Integer> indegree = countInDegree(graph);

 for (Vertex v : indegree.keySet()) {

 if(indegree.get(v) == 0) {

 perimeter.add(v);

 visited.add(v);

 }

 }

while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 int inDeg = indegree.get(to);

 inDeg--;

 if (inDeg == 0) {

 perimeter.add(to);

 visited.add(to);

 }

 indegree.put(to, inDeg);

 }...Start with BFS code (Queue to visit neighbors, List to mark visited)
Count the in-degree of each vertex
 queue up the 0 in-degree nodes to visit
Loop over Queue
 for each neighbor of a visited node reduce their in-degree count
 for nodes that hit 0, add them to Queue
Toposort is order nodes are “visited” (could create separate List to track order, could print out as you add to Set)

CSE 373 23SP 27

Graph Traversals
Topological Sort
Shortest Path

CSE 373 23SP 28

The Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t,
how long is the shortest path from s to t?

What edges makeup that path?

This is a little harder, but still totally
doable! We just need a way to keep
track of how far each node is from
the start.
○Sounds like a job for?

CSE 373 23SP 29

Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex
t, how long is the shortest path from s to

t? What edges make up that path?

This is a little harder, but still totally
doable! We just need a way to keep
track of how far each node is from
the start.
○Sounds like a job for?

■ BFS!

 ...

 Map<Vertex, Edge> edgeTo = ...

 Map<Vertex, Double> distTo = ...

 edgeTo.put(start, null);

 distTo.put(start, 0.0);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 edgeTo.put(to, edge);

 distTo.put(to, distTo.get(from) + 1);

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

 return edgeTo;

}

Remember how we got to this
point, and what layer this

vertex is part of

The start required no edge
to arrive at, and is on level 0

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t,
how long is the shortest path from s to t?

What edges makeup that path?

CSE 373 23SP 30

BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER

 ...

 Map<Vertex, Edge> edgeTo = ...

 Map<Vertex, Double> distTo = ...

 edgeTo.put(start, null);

 distTo.put(start, 0.0);

 while (!perimeter.isEmpty()) {

 Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

 Vertex to = edge.to();

 if (!visited.contains(to)) {

 edgeTo.put(to, edge);

 distTo.put(to, distTo.get(from) + 1);

 perimeter.add(to);

 visited.add(to);

 }

 }

 }

 return edgeTo;

}

EDGETO

DISTTO

The edgeTo map stores backpointers: each vertex
remembers what vertex was used to arrive at it!

Note: this code stores visited, edgeTo, and distTo as
external maps (only drawn on graph for convenience).
Another implementation option: store them as fields of the
nodes themselves

0

1

1

2

2

A B C D E

CSE 373 23SP 31

What about the Target Vertex?
This modification on BFS didn’t mention the target
vertex at all!

Instead, it calculated the shortest path and distance
from start to every other vertex
○This is called the shortest path tree

■ A general concept: in this implementation, made up of distances and backpointers

Shortest path tree has all the answers!
○Length of shortest path from A to D?

■ Lookup in distTo map: 2

○What’s the shortest path from A to D?
■ Build up backwards from edgeTo map: start at D, follow backpointer to B, follow

backpointer to A – our shortest path is A 🡪 B 🡪 D

All our shortest path algorithms will have this
property
○ If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO

0

1

1

2

2

Shortest Path
Tree:

CSE 373 23SP 32

Recap: Graph Problems

EASY MEDIUM

s-t Connectivity Problem

Given source vertex s and a
target vertex t, does there exist

a path between s and t?

(Unweighted) Shortest Path
Problem

Given source vertex s and a
target vertex t, how long is the
shortest path from s to t? What

edges make up that path?

BFS or DFS + check if we’ve
hit t

BFS + generate shortest
path tree as we go

What about the Shortest
Path Problem on a weighted
graph?

Just like everything is Graphs, every problem is a Graph Problem

BFS and DFS are very useful tools to solve these! We’ll see plenty more.

CSE 373 23SP 33

Next Stop Weighted Shortest Paths
HARDER (FOR NOW)

● Suppose we want to find shortest path
from A to C, using weight of each edge
as “distance”

● Is BFS going to give us the right result
here?

A

B

C

D

14.0

12.0

9000.2

1.5

start
target

CSE 373 23SP 34

Dijkstra’s Algorithm

● Named after its inventor, Edsger Dijkstra (1930-2002)
○ Truly one of the “founders” of computer science
○ 1972 Turing Award
○ This algorithm is just one of his many contributions!
○ Example quote: “Computer science is no more about computers than

astronomy is about telescopes”

● The idea: reminiscent of BFS, but adapted to handle weights
○ Grow the set of nodes whose shortest distance has been computed
○ Nodes not in the set will have a “best distance so far”

CSE 373 23SP 35

Dijkstra’s Algorithm: Idea

● Initialization:
○ Start vertex has distance 0; all other vertices have distance ∞

● At each step:
○ Pick closest unknown vertex v
○ Add it to the “cloud” of known vertices
○ Update “best-so-far” distances for vertices with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOW
N

UNKNOW
N

PERIMETER

start

CSE 373 23SP 36

dijkstraShortestPath(G graph, V start)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS,
“known” is nodes that are
finalized (we know their

path)

Dijkstra’s algorithm is all
about updating “best-so-far”

in distTo if we find shorter
path! Init all paths to infinite.

Order matters: always visit
closest first!

Consider all vertices
reachable from me: would

getting there through me be
a shorter path than they
currently know about?

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]

C D

B
A

KNOWN

PERIMETER

0

2

3 7??

2

3 5

1

start

u v

 Set known; Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0

 while (there are unknown vertices):

 let u be the closest unknown vertex

 known.add(u);
 for each edge (u,v) from u with weight w:

 oldDist = distTo.get(v) // previous best path to v

 newDist = distTo.get(u) + w // what if we went through u?

 if (newDist < oldDist):

 distTo.put(v, newDist)

 edgeTo.put(v, u)

CSE 373 23SP 37

Dijkstra’s Algorithm: Key Properties

Once a vertex is marked known,
its shortest path is known
○ Can reconstruct path by following

back-pointers (in edgeTo map)

dijkstraShortestPath(G graph, V start)

 Set known; Map edgeTo, distTo;

 initialize distTo with all nodes mapped to ∞, except start to 0

 while (there are unknown vertices):

 let u be the closest unknown vertex

 known.add(u)

 for each edge (u,v) to unknown v with weight w:

 oldDist = distTo.get(v) // previous best path to v

 newDist = distTo.get(u) + w // what if we went through u?

 if (newDist < oldDist):

 distTo.put(v, newDist)

 edgeTo.put(v, u)

 While a vertex is not known, another
shorter path might be found
- We call this update relaxing the

distance because it only ever
shortens the current best path

 Going through closest vertices first
lets us confidently say no shorter
path will be found once known
- Because not possible to find a

shorter path that uses a farther
vertex we’ll consider later

CSE 373 23SP 38

Questions?

CSE 373 23SP 39

That’s all!

