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Lecture 17: Graph Traversals CSE 373: Data Structures and 
Algorithms



CSE 373 23SP  2

Warm Up

How would you transform the following scenario into a graph?

You are creating a graph representing a brand-new social media network. Each 
profile has both the option to “friend” another user or to “follow” another user. When 
”friend” is selected the other profile is asked for permission, and if given the two 
profiles will link to one another. If “follow” is selected then no permission is asked, 
but the recipient will not connect to the follower. Answer the following questions 
about the graph design:

What are the vertices?

What are the edges?

Undirected or directed edges?

Weighted or unweighted edges?

Profiles

Follows and friendships

Directed

Unweighted

Slido Event #1608638
https://app.sli.do/event/bqT
zak53Lu9msB67Q72djQ 

https://app.sli.do/event/bqTzak53Lu9msB67Q72djQ
https://app.sli.do/event/bqTzak53Lu9msB67Q72djQ
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Warm Up

How would you transform the following scenario into a graph?

You are going to a music festival and are trying to plan the perfect schedule so you 
can catch all of your favorite artists. You know what time each act starts and how 
long it will be, you can only get into an act if you get there before it starts and you can 
only leave an act after it ends.

Answer the following questions about the graph design:

What are the vertices?

What are the edges?

Undirected or directed?

Weighted or unweighted?

Artists (aka each act/performance)

Possible choices for the next act

Directed

Unweighted
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Announcements
● Midterm Grades released!

○ You will see the points you got per question but not the specific rubric items applied
○ Instead you can see the rubric we used and some hints for how to get full credit in this 

document so you can assess your own answers
○ The resubmission will be entirely online through Gradescope

■ You have the choice per question to submit a new answer, if you do not want to resubmit simply enter “skip”
■ This is a “no risk” resubmission, we will take the greater of your two scores per question to make your resubmission grade
■ Your final midterm grade will be the average of your two scores
■ Please put all questions about the resubmission as a private EdBoard post
■ You can use the internet, your notes, conceptual conversations with one another and with the course staff to formulate 

your new answers
■ We will open both the paper and the digital midterm submissions for regrade requests after all grades have been 

released
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Graph Traversals
Topological Sort
Shortest Path
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s-t Connectivity Problem

Try to come up with an algorithm for 
connected(s, t)

s-t Connectivity Problem

Given source vertex s and a target vertex t, 
does there exist a path between s and t?
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5

6

7

8

0s
t

-We can use recursion: if a neighbor of s is 
connected to t, that means s is also 
connected to t!
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s-t Connectivity Problem: Proposed Solution

connected(Vertex s, Vertex t) {
  if (s == t) {
    return true;
  } else {
    for (Vertex n : s.neighbors) {
      if (connected(n, t)) {
        return true;
      }
    }
    return false;
  }
}

1

2

3

4

5

6

7

8

0s
t
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What’s wrong with this proposal?

Does 0 == 7?  No; if(connected(1, 7) return true;
Does 1 == 7?  No; if(connected(0, 7) return true;
Does 0 == 7?

connected(Vertex s, Vertex t) {
  if (s == t) {
    return true;
  } else {
    for (Vertex n : s.neighbors) {
      if (connected(n, t)) {
        return true;
      }
    }
    return false;
  }
}
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0s
t
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s-t Connectivity Problem: Better Solution

Solution: Mark each node as visited!

Set<Vertex> visited;  // assume global
connected(Vertex s, Vertex t) {
  if (s == t) {
    return true;
  } else {
    visited.add(s);
    for (Vertex n : s.neighbors) {
      if (!visited.contains(n)) {
        if (connected(n, t)) {
          return true;
        }
      }
    }
    return false;
  }
}

This general approach for crawling 
through a graph is going to be the 
basis for a LOT of algorithms!
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Set<Vertex> visited; // assume global

connected(Vertex s, Vertex t) {
  if (s == t) {
    return true;
  } else {
    visited.add(s);
    for (Vertex n : s.neighbors) {
      if (!visited.contains(n)) {
        if (connected(n, t)) {
          return true;
        }
      }
    }
    return false;
  }
}

Recursive Depth-First Search (DFS)
What order does this algorithm use to visit nodes?

- Assume order of s.neighbors is arbitrary!
• It will explore one option “all the way down” before 

coming back to try other options
- Many possible orderings: {0, 1, 2, 5, 6, 9, 7, 8, 4, 3} or 

{0, 1, 4, 3, 2, 5, 8, 6, 7, 9} both possible

1
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s

VISITED

9

• We call this approach a depth-first search (DFS)
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Set<Vertex> visited; // assume global

connected(Vertex s, Vertex t) {
  if (s == t) {
    return true;
  } else {
    visited.add(s);
    for (Vertex n : s.neighbors) {
      if (!visited.contains(n)) {
        if (connected(n, t)) {
          return true;
        }
      }
    }
    return false;
  }
}

1

2 3

4

5 8

0s

CSE 143 Review traversing a 
binary tree depth-first has 3 
options:

- Pre-order: visit node before 
its children

- In-order: visit node between 
its children

- Post-order: visit node after its 
children

VISITED

Aside  Tree Traversals
We could also apply this code to a tree (recall: a type of graph) to do a 
depth-first search on it

The difference between 
these orderings is when 
we “process” the root – 
all are DFS!
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This is our goal, but how do we translate into code?
• Key observation: recursive calls interrupted s.neighbors 

loop to immediately process children
• For BFS, instead we want to complete that loop before 

processing children
• Recursion isn’t the answer! Need a data structure to 

”queue up” children…

Breadth-First Search (BFS)
Suppose we want to visit closer nodes first, instead of following one 
choice all the way to the end
● Just like level-order traversal of a tree, now generalized to any graph
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VISITED
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We call this approach a breadth-first search (BFS)

for (Vertex n : s.neighbors) {

0

1
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4

• Explore “layer by layer”
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BFS Implementation
bfs(Graph graph, Vertex start) {

  
Our extra data structure! Will 
keep track of “outer edge” of 

nodes still to explore

Let’s make this a bit more 
realistic and add a Graph

Kick off the algorithm by 
adding start to perimeter

1
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9start

Grab one element at a time 
from the perimeter

Look at all that 
element’s children

Add new ones to 
perimeter!

Queue<Vertex> perimeter = new Queue<>();

   Set<Vertex> visited = new Set<>();  

  perimeter.add(start);

  visited.add(start);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

 for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();
      if (!visited.contains(to)) {

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

}
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BFS Implementation: In Action
PERIMETER

bfs(Graph graph, Vertex start) {

  Queue<Vertex> perimeter = new Queue<>();

  Set<Vertex> visited = new Set<>();  

  perimeter.add(start);

  visited.add(start);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

}

1

2

3

4

5
6

7

8

start

VISITED

9

1 2 4 5 3 6 8 9 7
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0

1

2

3

4

BFS Intuition: Why Does it Work?
PERIMETER

bfs(Graph graph, Vertex start) {

  Queue<Vertex> perimeter = new Queue<>();

  Set<Vertex> visited = new Set<>();  

  perimeter.add(start);

  visited.add(start);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

}

1

2
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6
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8

start

VISITED

9

1 2 4 5 3 6 8 9 7

• Properties of a queue exactly what gives us this 
incredibly cool behavior

• As long as we explore an entire layer before 
moving on (and we will, with a queue) the next 
layer will be fully built up and waiting for us by 
the time we finish!

• Keep going until perimeter is empty
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BFS’s Evil Twin: DFS!
bfs(Graph graph, Vertex start) {

  Queue<Vertex> perimeter = new Queue<>();

  Set<Vertex> visited = new Set<>();  

  perimeter.add(start);

  visited.add(start);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

}

dfs(Graph graph, Vertex start) {

  Stack<Vertex> perimeter = new Stack<>();

  Set<Vertex> visited = new Set<>();  

  perimeter.add(start);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

if (!visted.contains(from)) {

      for (Edge edge:graph.edgesFrom(from)) {

        Vertex to = edge.to();

perimeter.add(to)

      }

      visited.add(from);

    }

  }

}

In DFS we can’t immediately add a node as 
“visited”. We need to make sure we are only 
marking the node when it is popped.

Change Queue for order to 
process neighbors to a 

Stack
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Recap: Graph Traversals
We’ve seen two approaches for ordering a graph traversal

BFS and DFS are just techniques for iterating! (think: for loop over an array)
○Need to add code that actually processes something to solve a problem
○A lot of interview problems on graphs can be solved with modifications on top of BFS or DFS! 

Very worth being comfortable with the pseudocode ☺

BFS
(Iterative)

• Explore layer-by-layer: examine every node at 
a certain distance from start, then examine 
nodes that are one level farther 

• Uses a queue!

DFS
(Iterative)

• Follow a “choice” all the way to the end, then 
come back to revisit other choices

• Uses a stack!

DFS
(Recursive) Be careful using this – on huge graphs, might overflow the call stack

Let’s Practice 
Now!
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Using BFS for the s-t Connectivity Problem

s-t Connectivity Problem

Given source vertex s and a target vertex 
t, does there exist a path between s and 

t?

stCon(Graph graph, Vertex start, Vertex t) {

  Queue<Vertex> perimeter = new Queue<>();

  Set<Vertex> visited = new Set<>();  

  perimeter.add(start);

  visited.add(start);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    if (from == t) { return true; }

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

  return false;

}

BFS is a great building block – all 
we have to do is check each node 
to see if we’ve reached t!
○Note: we’re not using any specific 

properties of BFS here, we just needed a 
traversal. DFS would also work. 
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Graph Traversals
Topological Sort
Shortest Path
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Topological Sort

A topological sort of a directed acyclic graph G 
is an ordering of the nodes, where for every 
edge in the graph, the origin appears before 
the destination in the ordering

Intuition: a “dependency graph”
○An edge (u, v) means u must happen before v
○A topological sort of a dependency graph gives an 

ordering that respects dependencies

Applications:
○Graduating
○Compiling multiple Java files
○Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological 
Sort:

With original edges for 
reference:

A B C

Input:
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Ordering Dependencies

●Given a Directed Acyclic Graph(DAG) G, where we have an edge from u to v if 
u must happen before v.

●We can only do things one at a time, can we find an order that respects 
dependencies?

Given: a directed graph G
Find: an ordering of the vertices so all edges go from left to right (all 
the dependency arrows are satisfied and the vertices can be 
processed left to right with no problems) . 

Topological Sort (aka Topological Ordering)
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Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the ordering.
More generally, if the only incoming edges are from vertices already in the ordering, it’s safe to 
add. 

0 1

2

1

1

A C B D E

0

10

0

0
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Problem 1: Ordering Dependencies

Today’s (first) problem: Given a bunch of courses with prerequisites, find an 
order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417
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Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417
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DIRECTED ACYCLIC 
GRAPH

Can We Always Topo Sort a Graph?
Can you topologically sort this graph?

What’s the difference between this graph and our first graph?

A graph has a topological ordering if it is a DAG
○But a DAG can have multiple orderings

CSE 143

CSE 373

CSE 417

🤔 Where do I 
start?

Where do I end? 
🤔

MATH 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

No 😭

• A directed graph without 
any cycles

• Edges may or may not be 
weighted
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Topological Sort Pseudocode

toposort(Graph graph) {

  Queue<Vertex> perimeter = new Queue<>();

  Set<Vertex> visited = new Set<>();  

  Map<Vertex, Integer> indegree = countInDegree(graph);

  

  for (Vertex v : indegree.keySet()) {

    if(indegree.get(v) == 0) {

      perimeter.add(v);

      visited.add(v);

    }

  }

while (!perimeter.isEmpty()) {

  Vertex from = perimeter.remove();

  for (Edge edge : graph.edgesFrom(from)) {

    Vertex to = edge.to();

    if (!visited.contains(to)) {

      int inDeg = indegree.get(to);

      inDeg--;

      if (inDeg == 0) {

        perimeter.add(to);

        visited.add(to);

      } 

      indegree.put(to, inDeg);

    }...Start with BFS code (Queue to visit neighbors, List to mark visited)
Count the in-degree of each vertex 
  queue up the 0 in-degree nodes to visit
Loop over Queue
  for each neighbor of a visited node reduce their in-degree count
  for nodes that hit 0, add them to Queue
Toposort is order nodes are “visited” (could create separate List to track order, could print out as you add to Set)
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Graph Traversals
Topological Sort
Shortest Path
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The Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t, 
how long is the shortest path from s to t? 

What edges makeup that path?

This is a little harder, but still totally 
doable! We just need a way to keep 
track of how far each node is from 
the start.
○Sounds like a job for?
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Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex 
t, how long is the shortest path from s to 

t? What edges make up that path?

This is a little harder, but still totally 
doable! We just need a way to keep 
track of how far each node is from 
the start.
○Sounds like a job for?

■ BFS!

   ...

  Map<Vertex, Edge> edgeTo = ...

  Map<Vertex, Double> distTo = ...

  edgeTo.put(start, null);

  distTo.put(start, 0.0);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        edgeTo.put(to, edge);

        distTo.put(to, distTo.get(from) + 1);

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

  return edgeTo;

}

Remember how we got to this 
point, and what layer this 

vertex is part of

The start required no edge 
to arrive at, and is on level 0

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t, 
how long is the shortest path from s to t? 

What edges makeup that path?
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BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER

   ...

  Map<Vertex, Edge> edgeTo = ...

  Map<Vertex, Double> distTo = ...

  edgeTo.put(start, null);

  distTo.put(start, 0.0);

  while (!perimeter.isEmpty()) {

    Vertex from = perimeter.remove();

    for (Edge edge : graph.edgesFrom(from)) {

      Vertex to = edge.to();

      if (!visited.contains(to)) {

        edgeTo.put(to, edge);

        distTo.put(to, distTo.get(from) + 1);

        perimeter.add(to);

        visited.add(to);

      }

    }

  }

  return edgeTo;

}

EDGETO

DISTTO

The edgeTo map stores backpointers: each vertex 
remembers what vertex was used to arrive at it!

Note: this code stores visited, edgeTo, and distTo as 
external maps (only drawn on graph for convenience). 
Another implementation option: store them as fields of the 
nodes themselves

0

1

1

2

2

A B C D E
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What about the Target Vertex?
This modification on BFS didn’t mention the target 
vertex at all!

Instead, it calculated the shortest path and distance 
from start to every other vertex
○This is called the shortest path tree

■ A general concept: in this implementation, made up of distances and backpointers

Shortest path tree has all the answers!
○Length of shortest path from A to D?

■ Lookup in distTo map: 2

○What’s the shortest path from A to D?
■ Build up backwards from edgeTo map: start at D, follow backpointer to B, follow 

backpointer to A – our shortest path is A 🡪 B 🡪 D

All our shortest path algorithms will have this 
property
○ If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO

0

1

1

2

2

Shortest Path 
Tree:
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Recap: Graph Problems

EASY MEDIUM

s-t Connectivity Problem

Given source vertex s and a 
target vertex t, does there exist 

a path between s and t?

(Unweighted) Shortest Path 
Problem

Given source vertex s and a 
target vertex t, how long is the 
shortest path from s to t? What 

edges make up that path?

BFS or DFS + check if we’ve 
hit t

BFS + generate shortest 
path tree as we go

What about the Shortest 
Path Problem on a weighted 
graph?

Just like everything is Graphs, every problem is a Graph Problem

BFS and DFS are very useful tools to solve these! We’ll see plenty more.
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Next Stop  Weighted Shortest Paths
HARDER (FOR NOW)

● Suppose we want to find shortest path 
from A to C, using weight of each edge 
as “distance”

● Is BFS going to give us the right result 
here?

A

B

C

D

14.0

12.0

9000.2

1.5

start
target
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Dijkstra’s Algorithm

● Named after its inventor, Edsger Dijkstra (1930-2002)
○ Truly one of the “founders” of computer science
○ 1972 Turing Award
○ This algorithm is just one of his many contributions!
○ Example quote: “Computer science is no more about computers than 

astronomy is about telescopes”

● The idea: reminiscent of BFS, but adapted to handle weights
○ Grow the set of nodes whose shortest distance has been computed
○ Nodes not in the set will have a “best distance so far”
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Dijkstra’s Algorithm: Idea

● Initialization:
○ Start vertex has distance 0; all other vertices have distance ∞ 

● At each step:
○ Pick closest unknown vertex v
○ Add it to the “cloud” of known vertices
○ Update “best-so-far” distances for vertices with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOW
N

UNKNOW
N

PERIMETER

start
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dijkstraShortestPath(G graph, V start)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS, 
“known” is nodes that are 
finalized (we know their 

path)

Dijkstra’s algorithm is all 
about updating “best-so-far” 

in distTo if we find shorter 
path! Init all paths to infinite.

Order matters: always visit 
closest first!

Consider all vertices 
reachable from me: would 

getting there through me be 
a shorter path than they 
currently know about? 

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]

C D

B
A

KNOWN

PERIMETER

0

2

3 7??

2

3 5

1

start

u v

  Set known; Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0

  while (there are unknown vertices):

    let u be the closest unknown vertex

    known.add(u);
    for each edge (u,v) from u with weight w:

      oldDist = distTo.get(v)      // previous best path to v

      newDist = distTo.get(u) + w  // what if we went through u?

      if (newDist < oldDist):

        distTo.put(v, newDist)

        edgeTo.put(v, u)
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Dijkstra’s Algorithm: Key Properties

Once a vertex is marked known, 
its shortest path is known
○ Can reconstruct path by following 

back-pointers (in edgeTo map)

dijkstraShortestPath(G graph, V start)

  Set known; Map edgeTo, distTo;

  initialize distTo with all nodes mapped to ∞, except start to 0

  while (there are unknown vertices):

    let u be the closest unknown vertex

    known.add(u)

    for each edge (u,v) to unknown v with weight w:

      oldDist = distTo.get(v)      // previous best path to v

      newDist = distTo.get(u) + w  // what if we went through u?

      if (newDist < oldDist):

        distTo.put(v, newDist)

        edgeTo.put(v, u)

 While a vertex is not known, another 
shorter path might be found
- We call this update relaxing the 

distance because it only ever 
shortens the current best path

 Going through closest vertices first 
lets us confidently say no shorter 
path will be found once known
- Because not possible to find a 

shorter path that uses a farther 
vertex we’ll consider later
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Questions?
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That’s all!


