
 1CSE 373 23SP

Lecture 14: Heap Array
Implementation

CSE 373 Data Structures and
Algorithms

1CSE 373 20 SP – CHAN & CHAMPION

CSE 373 23SP 2

Warm Up

8

9 10

3

9 11

5

4 7

2

22

36 47

2

4

8 9 10

3

1

5

Valid Invalid Invalid

Are the following trees valid min
heaps?

Slido Event #1149405
https://app.sli.do/event/gru
QoFY1xNmu2Ek6xTgr22

https://app.sli.do/event/gruQoFY1xNmu2Ek6xTgr22
https://app.sli.do/event/gruQoFY1xNmu2Ek6xTgr22

CSE 373 23SP 3

Announcements

● P2 due tonight
● P3 out now!

○ Will be due 5/10
○ Technically a “1 week” assignment

● E1 regrade requests due by 4/30
● A look ahead for assignments:

○ E5 will release on Monday 5/1, due two weeks later on 5/15
○ Midterm resubmissions will open 5/3 and be due 5/10 - NO LATE DAYS
○ P4 (last programming assignment) will release Friday 5/12 and be due Wed 6/7

● Midterm this Friday during class
○ Review in Section tomorrow (Please fill out http://tinyurl.com/373review)
○ See the new “Exams” page on the course website

http://tinyurl.com/373review

CSE 373 23SP 4

Your toolbox so far…

ADT
○List – flexibility, easy movement of elements within structure
○Stack – optimized for first in last out ordering
○Queue – optimized for first in first out ordering
○Dictionary (Map) – stores two pieces of data at each entry
○Priority Queue - optimized for highest priority out first

Data Structure Implementation
○Array – easy look up, hard to rearrange
○Linked Nodes – hard to look up, easy to rearrange
○Hash Table – constant time look up, no ordering of data
○BST – efficient look up, possibility of bad worst case
○AVL Tree – efficient look up, protects against bad worst case, hard to

implement
○Heap - efficient for Min or Max values

CSE 373 23SP 5

Implementing add()

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent
is smaller than you (or you’re the root).

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the
worst-case runtime is Theta(log(n))

CSE 373 23SP 6

Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in
this order:

● 5, 10, 15, 20, 7, 2

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely

filling each level before creating a new one

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent is smaller than you (or you’re the root).

CSE 373 23SP 7

minHeap runtimes

removeMin():
● remove root node
● find last node in tree and swap to top level
● percolate down to fix heap invariant

add()
● insert new node into next available spot
● percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log n) time on complete trees, with some extra class variants

But it’s NOT fun

And there’s a much better way (that we’ll talk about Wednesday)!

CSE 373 23SP 8

Heap Array Implementation
More Priority Queue Operations

CSE 373 23SP 9

Implement Heaps with an array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree
representation of a heap into an
array implementation where you fill
in the array in level-order from left
to right.

The array implementation of a heap
is what people actually implement,
but the tree drawing is how to think
of it conceptually. Everything
we’ve discussed about the tree
representation still is true!

CSE 373 23SP 10

Implement Heaps with an array

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum
node?

How do we find the last node?

How do we find the next open
space?

How do we find a node’s left child?

How do we find a node’s right
child?

How do we find a node’s parent?

CSE 373 23SP 11

Heap Implementation Runtimes

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation add removeMin Peek

Array-based heap worst: 𝚹(log n)
in-practice: 𝚹(1)

worst: 𝚹(log n)
in-practice: 𝚹(log n)

𝚹(1)

We’ve matched the asymptotic worst-case behavior of AVL
trees.

But we’re actually doing better!

● The constant factors for array accesses are better.
● The tree can be a constant factor shorter because of

stricter height invariants.
● In-practice case for add is really good.
● A heap is MUCH simpler to implement.

CSE 373 23SP 12

Are heaps always better? AVL vs Heaps

● The really amazing things about heaps over AVL
implementations are the constant factors (e.g. 1.2n instead of 2n)
and the sweet sweet Theta(1) in-practice `add` time.

● The really amazing things about AVL implementations over
heaps is that AVL trees are absolutely sorted, and they guarantee
worst-case be able to find (contains/get) in Theta(log(n)) time.

● If heaps have to implement methods like contains/get/ (more
generally: finding a particular value inside the data structure) – it
pretty much just has to loop through the array and incur a worst
case Theta(n) runtime.

● Heaps are stuck at Theta(n) runtime and we can’t do anything
more clever…. aha, just kidding.. unless…?

CSE 373 23SP 13

Project 3

Build a heap! Alongside hash maps, heaps are
one of the most useful data structures to know
– and pop up many more times this quarter!
● You’ll also get practice using multiple data

structures together to implement an ADT!
● Directly apply the invariants we’ve talked so much

about in lecture! Even has an invariant checker to
verify this (a great defensive programming
technique!)

MIN PRIORITY QUEUE ADT

removeMin() – returns the element
with the smallest priority, removes it
from the collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove
the element with the smallest priority

add(value) – add a new element to
the collection

changePriority(item, priority) – update
the priority of an element

contains(item) – check if an element
exists in the priority queue

CSE 373 23SP 14

Project 3 Tips

● Project 3 adds changePriority and contains to the
PriorityQueue ADT, which aren’t efficient on a heap
alone

● You should utilize an extra data structure for
changePriority!
○ Doesn’t affect correctness of PQ, just runtime. Please use a

built-in Java collection instead of implementing your own
(although you could in theory).

● changePriority Implementation Strategy:
○ implement without regards to efficiency (without the extra data

structure) at first

○ analyze your code’s runtime and figure out which parts are
inefficient

○ reflect on the data structures we’ve learned and see how any of
them could be useful in improving the slow parts in your code

MIN PRIORITY QUEUE ADT

removeMin() – returns the element
with the smallest priority, removes it
from the collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove
the element with the smallest priority

add(value) – add a new element to
the collection

changePriority(item, priority) – update
the priority of an element

contains(item) – check if an element
exists in the priority queue

CSE 373 23SP 15

Heap Array Implementation
More Priority Queue Operations

CSE 373 23SP 16

More Operations

Min Priority Queue ADT

removeMin() – returns the
element with the smallest priority,
removes it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not
remove the element with the
smallest priority

add(value) – add a new element
to the collection

We’ll use priority queues for lots of things
later in the quarter.

Let’s add them to our ADT now.

Some of these will be asymptotically faster
for a heap than an AVL tree!

BuildHeap(elements e₁, …, eₙ)

Given n elements, create a heap containing
exactly those n elements.

CSE 373 23SP 17

Even More Operations

BuildHeap(elements e₁, …, eₙ)

Given n elements, create a heap containing exactly those n elements.

Try 1: Just call insert n times.

● Worst case running time?
● n calls, each worst case Θ(log n). So it’s Θ(n log n) right?
● That proof isn’t valid. There’s no guarantee that we’re getting worst case every

time!
● Proof is right if we just want an O() bound
● But it’s not clear if it’s tight

CSE 373 23SP 18

BuildHeap Running Time

Let’s try again for a Theta bound.

The problem last time was making sure we always hit the worst case.

If we insert the elements in decreasing order we will!
● Every node will have to percolate all the way up to the root.

So we really have n Θ(log n) operations. QED.

There’s still a bug with this proof!

CSE 373 23SP 19

BuildHeap Running Time (again)

Let’s try once more.

Saying the worst case was decreasing order was a good start.

What are the actual running times?

It’s Θ(h), where h is the current height.
● The tree isn’t height log n at the beginning.

But most nodes are inserted in the last two levels of the tree.
● For most nodes, h is Θ(log n).

The number of operations is at least

n/2 · Ω(log n) = Ω(n log n).

CSE 373 23SP 20

Can We Do Better?

● What’s causing the n add strategy to take so long?
○ Most nodes are near the bottom, and might need to percolate all

the way up

● Idea 2: Dump everything in the array, and percolate things down until
the heap invariant is satisfied
○ Intuition: this could be faster!
○ The bottom two levels of the tree have Ω(n) nodes, the top two

have 3 nodes
○ Maybe we can make “most of the nodes” go only a constant

distance

CSE 373 23SP 21

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4

CSE 373 23SP 22

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3

10

.7.

CSE 373 23SP 23

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

10

.7. 11

.2.

11

.6.

.3.

5..4.

5.

CSE 373 23SP 24

Floyd’s buildHeap algorithm

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

10

.7. 11

.2.

11

.6.

.3.

5..4.

5.

12

.2.

.6.

12

12

.11.

CSE 373 23SP 25

Is It Really Faster? Floyd’s buildHeap runs in O(n) time!

percolateDown() has worst case log n in general, but for most of these nodes,
it has a much smaller worst case!
● n/2 nodes in the tree are leaves, have 0 levels to travel
● n/4 nodes have at most 1 level to travel
● n/8 nodes have at most 2 levels to travel
● etc…

worst-case-work(n) ≈

Intuition: Even though there are log n levels, each level does a smaller and
smaller amount of work. Even with infinite levels, as we sum smaller and
smaller values (think 1/2ⁱ) we converge to a constant factor of n.

++
much of
the work

a little
less

a little
less

barely
anything

CSE 373 23SP 26

Optional Slide Floyd’s buildHeap Summation

Infinite geometric series

 find a pattern -> powers of 2

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

CSE 373 23SP 27

Even More Operations

● These operations will be useful in a few weeks…
● IncreaseKey(element,priority) Given an element of the heap and a

new, larger priority, update that object’s priority.
● DecreaseKey(element,priority) Given an element of the heap and a

new, smaller priority, update that object’s priority.
● Delete(element) Given an element of the heap, remove that

element.

● Should just be going to the right spot and percolating…
● Going to the right spot is the tricky part.
● In the programming projects, you’ll use a dictionary to find an element

quickly.

CSE 373 23SP 28

Questions?

CSE 373 23SP 29

That’s all!

