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Algorithms
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Warm Up

What is the resulting LLRB after 
inserting 22 into the tree below?

What is the resulting LLRB after 
inserting 67 into the tree below?

Left Rotation

Right Rotation

Slido Event #4079745
https://app.sli.do/event/ago
eeDZkDRsW3be3Vx5iYm 

https://app.sli.do/event/agoeeDZkDRsW3be3Vx5iYm
https://app.sli.do/event/agoeeDZkDRsW3be3Vx5iYm
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Announcements

● Exercise 1 grades released
○ regrade requests due 4/30

● Exercise 3 Due tonight
● Exercise 4 releases tonight
● Project 2 due Wednesday
● Project 3 (heaps) releases Wednesday
● Exam I in person on Friday
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Priority Queue ADT
Binary Heap
Binary Heap Methods
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Motivation

Some motivation for today’s lecture:
● Priority Queues are a staple of Java’s built-in data structures, commonly 

used for sorting needs
● Using Priority Queues and knowing their implementations are common 

technical interview subjects
● You’re implementing one in the next project – so everything you get out of 

today should be useful for that!
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A new ADT!

Imagine you’re managing a queue of food orders at a restaurant, which 
normally takes food orders first-come-first-served. 

Suddenly, Ana Mari Cauce walks into the restaurant! 

You realize that you should serve her as soon as possible (to gain 
political influence or so that she leaves the restaurant as soon as 
possible), and realize other celebrities (CSE 373 staff) could also arrive 
soon.  Your new food management system should rank customers and 
let us know which food order we should work on next (the most 
prioritized thing).
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Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the 
element with the smallest priority, 
removes it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not 
remove the element with the 
smallest priority

add(value) – add a new element 
to the collection

Perfect for our Ana Mari Cauce food order 
situation

Other uses:
● Well-designed printers
● Huffman Coding (CSE 143/123 last hw)
● Sorting algorithms
● Graph algorithms
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Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the 
element with the smallest 
priority, removes it from the 
collection

state

behavior

Set of comparable values
- Ordered based on 
“priority”

peekMin() – find, but do not 
remove the element with 
the smallest priority
add(value) – add a new 
element to the collection

Max Priority Queue ADT

removeMax() – returns the 
element with the largest 
priority, removes it from the 
collection

state

behavior

Set of comparable values
- Ordered based on 
“priority”

peekMax() – find, but do 
not remove the element 
with the largest priority
add(value) – add a new 
element to the collection

If a Queue is “First-In-First-Out” (FIFO) Priority 
Queues are “Most-Important-Out-First”

Items in Priority Queue must be comparable – 
The data structure will maintain some amount of 
internal sorting, in a sort of similar way to 
BSTs/AVLs
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Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array

Linked List (sorted)

AVL Tree

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.
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Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array 𝚹(1) 𝚹(n) 𝚹(n)

Linked List (sorted) 𝚹(n) 𝚹(1) 𝚹(1)

AVL Tree 𝚹(log n) 𝚹(log n) 𝚹(log n)

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.
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Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array 𝚹(1) 𝚹(n) 𝚹(n)
𝚹(1)

Linked List (sorted) 𝚹(n) 𝚹(1) 𝚹(1)

AVL Tree 𝚹(log n) 𝚹(log n) 𝚹(log n)
𝚹(1)

Maybe we already know how to implement a priority queue. 
How long would removeMin and peek take with these data structures?

Add a field to keep track of the min. 
Update on every insert or remove. 

AVL Trees are our baseline – let’s look at what computer 
scientists came up with as an alternative, analyze that, and 
then come back to AVL Tree as an option later



CSE 373 23SP  12

Priority Queue ADT
Binary Heap
Binary Heap Methods
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Heaps
Idea:

In a BST, we organized the data to find anything quickly. (go left or right 
to find a value deeper in the tree)

Now we just want to find the smallest things fast, so let’s write a 
different invariant:

Heap invariant 
Every node is less than or equal to both of its children.

6 5

4

8 7373

4

5

6

7

In particular, the smallest node is at the root!
● Super easy to peek now!

Do we need more invariants?
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Heaps

With the current definition we could still have degenerate trees. 
From our BST / AVL intuition, we know that degenerate trees take a long time to 
traverse from root to leaf, so we want to avoid these tree structures. 

The BST invariant was a bit complicated to maintain.
● Because we had to make sure when we inserted we could maintain the exact BST 

structure where nodes to the left are less than, nodes to the right are greater than…
● The heap invariant is looser than the BST invariant. 
● Which means we can make our structure invariant stricter.

4

5

6

7

a degenerate tree

… 
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Heaps

A tree is complete if:
● Every row, except potentially the last, is completely full
● The last row is filled from left to right (no “gap”)

Heap structure invariant: 
A heap is always a complete tree.

2

78

6

9

5

4

helps us avoid degenerate trees

2
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6 5

4

complete not complete
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Binary Heap invariants summary 

8
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This is a big idea! (heap 
invariants!)

One flavor of heap is a binary heap.

1. Binary Tree: every node has at most 2 children
2. Heap invariant: every node is smaller  than (or equal to) its 

children
3. Heap structure invariant: each level is “complete” meaning it 

has no “gaps”
a. Heaps are filled up left to right
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Self Check - Are these valid heaps?

Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Complete

2
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INVALID

INVALID

VALID
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Heap heights

A binary heap bounds our height at Theta(log(n)) because it’s 
complete – and it’s actually a little stricter and better than AVL.

4

5 8
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11 13

This means the runtime to 
traverse from root to leaf or leaf 
to root will be log(n) time. 
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Questions?
Priority Queue ADT
Priority Queue possible implementations
Heap invariants
Heap height
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Priority Queue ADT
Binary Heap
Binary Heap Methods
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Implementing peekMin()
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Implementing removeMin()

4

5 8
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10
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11 13

Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children 
causes lots of gaps

-What node can we replace with 
overallRoot that wont cause any 
gaps?

4

5 8

7

10

13
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11

Structure invariant restored 
Heap invariant broken

1. Return min 

2. Replace with bottom level right-most node 
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Implementing removeMin() - percolateDown

Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children 
causes lots of gaps

-What node can we replace with 
overallRoot that wont cause any 
gaps?

4

5 8

7

10

13

9

11

.4.  

13.5.

13

13

11

Structure invariant restored 
Heap invariant restored

What’s the worst-case running time?

Have to:
● Find last element
● Move it to top spot
● Swap until invariant restored

(how many times do we have to swap?)

This is why we want to keep the 
height of the tree small! The 
height of these tree structures 
(BST, AVL, heaps) directly 
correlates with the worst case 
runtimes

This is a big idea! (height of all 
these tree DS correlates w 
worst case runtimes – we 
want to design our trees to 

have reasonably small height!)

1. Return min
2. Replace with bottom level right-most node
3. percolateDown() 

Recursively swap parent with smallest child until 
parent is smaller than both children 
(or we’re at a leaf).
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Practice: removeMin()

10

17 14

9

11

5
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20 2216 15 2419 18

18

18

9
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1.) Remove min node
2.) replace with bottom level right-most 
node
3.) percolateDown - Recursively swap 
parent with smallest child
until parent is smaller than both children 
(or we’re at a leaf).
 



CSE 373 23SP  25

percolateDown()

Why does percolateDown swap with the smallest child instead of just 
any child?

4
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13
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11

If we swap 13 and 7, the heap invariant isn’t restored! 

7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.
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Implementing add()

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent 
is smaller than you (or you’re the root).
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Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the 
worst-case runtime is Theta(log(n))
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Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in 
this order:

● 5, 10, 15, 20, 7, 2

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely 

filling each level before creating a new one

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent is smaller than you (or you’re the root).
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minHeap runtimes

removeMin():
● remove root node
● find last node in tree and swap to top level
● percolate down to fix heap invariant

add()
● insert new node into next available spot
● percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log n) time on complete trees, with some extra class variants

But it’s NOT fun

And there’s a much better way (that we’ll talk about Wednesday)!
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Questions?
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That’s all!


