
 1CSE 373 23SP

Lecture 13: Intro to Heaps CSE 373 Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

What is the resulting LLRB after
inserting 22 into the tree below?

What is the resulting LLRB after
inserting 67 into the tree below?

Left Rotation

Right Rotation

Slido Event #4079745
https://app.sli.do/event/ago
eeDZkDRsW3be3Vx5iYm

https://app.sli.do/event/agoeeDZkDRsW3be3Vx5iYm
https://app.sli.do/event/agoeeDZkDRsW3be3Vx5iYm

CSE 373 23SP 3

Announcements

● Exercise 1 grades released
○ regrade requests due 4/30

● Exercise 3 Due tonight
● Exercise 4 releases tonight
● Project 2 due Wednesday
● Project 3 (heaps) releases Wednesday
● Exam I in person on Friday

CSE 373 23SP 4

Priority Queue ADT
Binary Heap
Binary Heap Methods

CSE 373 23SP 5

Motivation

Some motivation for today’s lecture:
● Priority Queues are a staple of Java’s built-in data structures, commonly

used for sorting needs
● Using Priority Queues and knowing their implementations are common

technical interview subjects
● You’re implementing one in the next project – so everything you get out of

today should be useful for that!

CSE 373 23SP 6

A new ADT!

Imagine you’re managing a queue of food orders at a restaurant, which
normally takes food orders first-come-first-served.

Suddenly, Ana Mari Cauce walks into the restaurant!

You realize that you should serve her as soon as possible (to gain
political influence or so that she leaves the restaurant as soon as
possible), and realize other celebrities (CSE 373 staff) could also arrive
soon. Your new food management system should rank customers and
let us know which food order we should work on next (the most
prioritized thing).

CSE 373 23SP 7

Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the
element with the smallest priority,
removes it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not
remove the element with the
smallest priority

add(value) – add a new element
to the collection

Perfect for our Ana Mari Cauce food order
situation

Other uses:
● Well-designed printers
● Huffman Coding (CSE 143/123 last hw)
● Sorting algorithms
● Graph algorithms

CSE 373 23SP 8

Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the
element with the smallest
priority, removes it from the
collection

state

behavior

Set of comparable values
- Ordered based on
“priority”

peekMin() – find, but do not
remove the element with
the smallest priority
add(value) – add a new
element to the collection

Max Priority Queue ADT

removeMax() – returns the
element with the largest
priority, removes it from the
collection

state

behavior

Set of comparable values
- Ordered based on
“priority”

peekMax() – find, but do
not remove the element
with the largest priority
add(value) – add a new
element to the collection

If a Queue is “First-In-First-Out” (FIFO) Priority
Queues are “Most-Important-Out-First”

Items in Priority Queue must be comparable –
The data structure will maintain some amount of
internal sorting, in a sort of similar way to
BSTs/AVLs

CSE 373 23SP 9

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array

Linked List (sorted)

AVL Tree

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.

CSE 373 23SP 10

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array 𝚹(1) 𝚹(n) 𝚹(n)

Linked List (sorted) 𝚹(n) 𝚹(1) 𝚹(1)

AVL Tree 𝚹(log n) 𝚹(log n) 𝚹(log n)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

For Array implementations, assume you do not need to resize.
Other than this assumption, do worst case analysis.

CSE 373 23SP 11

Implementing Priority Queues: Take I

Implementation add removeMin Peek

Unsorted Array 𝚹(1) 𝚹(n) 𝚹(n)
𝚹(1)

Linked List (sorted) 𝚹(n) 𝚹(1) 𝚹(1)

AVL Tree 𝚹(log n) 𝚹(log n) 𝚹(log n)
𝚹(1)

Maybe we already know how to implement a priority queue.
How long would removeMin and peek take with these data structures?

Add a field to keep track of the min.
Update on every insert or remove.

AVL Trees are our baseline – let’s look at what computer
scientists came up with as an alternative, analyze that, and
then come back to AVL Tree as an option later

CSE 373 23SP 12

Priority Queue ADT
Binary Heap
Binary Heap Methods

CSE 373 23SP 13

Heaps
Idea:

In a BST, we organized the data to find anything quickly. (go left or right
to find a value deeper in the tree)

Now we just want to find the smallest things fast, so let’s write a
different invariant:

Heap invariant
Every node is less than or equal to both of its children.

6 5

4

8 7373

4

5

6

7

In particular, the smallest node is at the root!
● Super easy to peek now!

Do we need more invariants?

CSE 373 23SP 14

Heaps

With the current definition we could still have degenerate trees.
From our BST / AVL intuition, we know that degenerate trees take a long time to
traverse from root to leaf, so we want to avoid these tree structures.

The BST invariant was a bit complicated to maintain.
● Because we had to make sure when we inserted we could maintain the exact BST

structure where nodes to the left are less than, nodes to the right are greater than…
● The heap invariant is looser than the BST invariant.
● Which means we can make our structure invariant stricter.

4

5

6

7

a degenerate tree

…

CSE 373 23SP 15

Heaps

A tree is complete if:
● Every row, except potentially the last, is completely full
● The last row is filled from left to right (no “gap”)

Heap structure invariant:
A heap is always a complete tree.

2

78

6

9

5

4

helps us avoid degenerate trees

2

78

6 5

4

complete not complete

CSE 373 23SP 16

Binary Heap invariants summary

8

9 10

2

4 5

3

6 7

1

22

36 47

2

4

8 9 10

3

1

5

This is a big idea! (heap
invariants!)

One flavor of heap is a binary heap.

1. Binary Tree: every node has at most 2 children
2. Heap invariant: every node is smaller than (or equal to) its

children
3. Heap structure invariant: each level is “complete” meaning it

has no “gaps”
a. Heaps are filled up left to right

CSE 373 23SP 17

Self Check - Are these valid heaps?

Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Complete

2

3

5

7 8

4

9 11 10

7

9 8

5

6

4

3

7

1

6

INVALID

INVALID

VALID

CSE 373 23SP 18

Heap heights

A binary heap bounds our height at Theta(log(n)) because it’s
complete – and it’s actually a little stricter and better than AVL.

4

5 8

7

10

2

9

11 13

This means the runtime to
traverse from root to leaf or leaf
to root will be log(n) time.

CSE 373 23SP 19

Questions?
Priority Queue ADT
Priority Queue possible implementations
Heap invariants
Heap height

CSE 373 23SP 20

Priority Queue ADT
Binary Heap
Binary Heap Methods

CSE 373 23SP 21

Implementing peekMin()

4

5 8

7

10

2

9

11 13

CSE 373 23SP 22

Implementing removeMin()

4

5 8

7

10

2

9

11 13

Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children
causes lots of gaps

-What node can we replace with
overallRoot that wont cause any
gaps?

4

5 8

7

10

13

9

11

Structure invariant restored
Heap invariant broken

1. Return min

2. Replace with bottom level right-most node

CSE 373 23SP 23

Implementing removeMin() - percolateDown

Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children
causes lots of gaps

-What node can we replace with
overallRoot that wont cause any
gaps?

4

5 8

7

10

13

9

11

.4.

13.5.

13

13

11

Structure invariant restored
Heap invariant restored

What’s the worst-case running time?

Have to:
● Find last element
● Move it to top spot
● Swap until invariant restored

(how many times do we have to swap?)

This is why we want to keep the
height of the tree small! The
height of these tree structures
(BST, AVL, heaps) directly
correlates with the worst case
runtimes

This is a big idea! (height of all
these tree DS correlates w
worst case runtimes – we
want to design our trees to

have reasonably small height!)

1. Return min
2. Replace with bottom level right-most node
3. percolateDown()

Recursively swap parent with smallest child until
parent is smaller than both children
(or we’re at a leaf).

CSE 373 23SP 24

Practice: removeMin()

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

1.) Remove min node
2.) replace with bottom level right-most
node
3.) percolateDown - Recursively swap
parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

CSE 373 23SP 25

percolateDown()

Why does percolateDown swap with the smallest child instead of just
any child?

4

5 8

7

10

13

9

11

If we swap 13 and 7, the heap invariant isn’t restored!

7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.

CSE 373 23SP 26

Implementing add()

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent
is smaller than you (or you’re the root).

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown – might have to do log(n) swaps, so the
worst-case runtime is Theta(log(n))

CSE 373 23SP 27

Practice: Building a minHeap
Construct a Min Binary Heap by adding the following values in
this order:

● 5, 10, 15, 20, 7, 2

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely

filling each level before creating a new one

add() Algorithm:
1. Insert a node on the bottom level that ensure no gaps
2. Fix heap invariant by percolate UP

i.e. swap with parent, until your parent is smaller than you (or you’re the root).

CSE 373 23SP 28

minHeap runtimes

removeMin():
● remove root node
● find last node in tree and swap to top level
● percolate down to fix heap invariant

add()
● insert new node into next available spot
● percolate up to fix heap invariant

Finding the last node/next available spot is the hard part.
You can do it in Θ(log n) time on complete trees, with some extra class variants

But it’s NOT fun

And there’s a much better way (that we’ll talk about Wednesday)!

CSE 373 23SP 29

Questions?

CSE 373 23SP 30

That’s all!

