
 1CSE 373 23SP

Lecture 11 : Red Black Trees CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

What is the final structure of the following AVL tree after inserting 6?

16

198

18 23

31

2 9

4

6

16

198

18 23

312

94

6

https://app.sli.do/event/8v1Ye3qNk4zJuYXoswAfHq
3586991

https://app.sli.do/event/8v1Ye3qNk4zJuYXoswAfHq

CSE 373 23SP 3

Warm Up

Imagine the value 55 is inserted into the
AVL tree shown in Figure 1.

What node becomes 55’s parent after
insertion and before any rotations?

Which node(s) become imbalanced due to
the insertion of 55? This should include all
nodes that would fail the AVL balance
requirement.

CSE 373 23SP 4

Announcements

Exam I Topics:

ADTs

- Lists
- Stacks
- Queues
- Maps

Data Structures

- Arrays
- Linked Lists
- Hash Tables
- Binary Search Trees
- AVLs
- LLRBs
- Tries

Code Analysis

- Code Modeling
- Big O /

Asymptotic
Analysis

- Case Analysis
- Recurrences
- Master Theorem

CSE 373 23SP 5

Review: Dictionaries
●Why are we so obsessed with Dictionaries? Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if
key already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedLi
st

HashTab
le

BST AVLTree

put(key,value)
best 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1)
worst 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(log n)

get(key)
best 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1)
worst 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(log n)

remove(key)
best 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(1) 𝚹(log n)
worst 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(n) 𝚹(log n)

CSE 373 23SP 6

Design Decisions

Before coding can begin engineers must carefully consider the
design of their code will organize and manage data

Things to consider:

● What functionality is needed?
○ What operations need to be supported?
○ Which operations should be prioritized?

● What type of data will you have?
○ What are the relationships within the data?
○ How much data will you have?
○ Will your data set grow?
○ Will your data set shrink?

● How do you think things will play out?
○ How likely are best cases?
○ How likely are worst cases?

CSE 373 23SP 7

You have been asked to create a new system for organizing
students in a course and their accompanying grades

What type of data will you have?
What are the relationships within the data?

How much data will you have?

Will your data set grow?
Will your data set shrink?

How do you think things will play out?
How likely are best cases?
How likely are worst cases?

Example: Class Gradebook

What functionality is needed?
What operations need to be supported?

Add students to course

Add grade to student’s record

Update grade already in student’s record

Remove student from course

Check if student is in course

Find specific grade for student

Organize students by name, keep grades in time order…

A couple hundred students, < 20 grades per student

Which operations should be prioritized?

A lot at the beginning,
Not much after that

Lots of add and drops?
Lots of grade updates?
Students with similar identifiers?

CSE 373 23SP 8

Example: Class Gradebook

What data should we use to identify students? (keys)
○Student IDs – unique to each student, no confusion (or collisions)
○Names – easy to use, support easy to produce sorted by name

How should we store each student’s grades? (values)
○Array List – easy to access, keeps order of assignments
○Hash Table – super efficient access, no order maintained

Which data structure is the best fit to store students and
their grades?
○Hash Table – student IDs as keys will make access very efficient
○AVL Tree - student names as keys will maintain alphabetical order

CSE 373 23SP 9

Practice: Music Storage
You have been asked to create a new system for organizing songs in a music service.
For each song you need to store the artist and how many plays that song has.

What functionality is needed?
• What operations need to be supported?
• Which operations should be prioritized?

What type of data will you have?
• What are the relationships within the data?
• How much data will you have?
• Will your data set grow?
• Will your data set shrink?

How do you think things will play out?
• How likely are best cases?
• How likely are worst cases?

Update number of plays for a song
Add a new song to an artist’s collection
Add a new artist and their songs to the service
Find an artist’s most popular song
Find service’s most popular artist

more…

Artists need to be associated with their songs,
songs need t be associated with their play counts
Play counts will get updated a lot
New songs will get added regularly

Some artists and songs will need to be accessed a lot more than others
Artist and song names can be very similar

CSE 373 23SP 10

Practice: Music Storage

How should we store songs and their play counts?
Hash Table – song titles as keys, play count as values, quick access for
updates
ArrayList – song titles as keys, play counts as values, maintain order of
addition to system
How should we store artists with their associated songs?
Hash Table – artist as key,
 Hash Table of their (songs, play counts) as values
 AVL Tree of their songs as values
AVL Tree – artists as key, hash tables of songs and counts as values

CSE 373 23SP 11

Questions?

CSE 373 23SP 12

AVLs

CSE 373 23SP 13

Two AVL Cases

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink Resolution
Rotate subtree left
Rotate root tree right

Left Kink Resolution
Rotate subtree right
Rotate root tree left

CSE 373 23SP 14

How Long Does Rebalancing Take?

● Assume we store in each node the height of its subtree.
○ How do we find an unbalanced node?
○ Just go back up the tree from where we inserted.

● How many rotations might we have to do?
○ Just a single or double rotation on the lowest unbalanced node.
○ A rotation will cause the subtree rooted where the rotation

happens to have the same height it had before insertion

○ log(n) time to traverse to a leaf of the tree
○ log(n) time to find the imbalanced node
○ constant time to do the rotation(s)
○ Theta(log(n)) time for put (the worst case for all interesting +

common AVL methods (get/containsKey/put is logarithmic
time)

CSE 373 23SP 15

AVL insert(): Approach

Our overall algorithm:
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the

new leaf:
○ The insertion may (or may not) have changed the node’s

height
○ Detect height imbalance and perform a rotation to restore

balance

Facts that make this easier:
● Imbalances can only occur along the path from the new leaf to the

root
● We only have to address the lowest unbalanced node
● Applying a rotation (or double rotation), restores the height of the

subtree before the insertion -- when everything was balanced!
● Therefore, we need at most one rebalancing operation

6

8

10

9 12

11

7

...

...

(1) Originally, whole tree
balanced, and this subtree
has height 2

(2) Insertion creates
imbalance(s), including
the subtree (8 is lowest
unbalanced node)

(3) Since the rotation on 8 will
restore the subtree to height
2, whole tree balanced again!

2

CSE 373 23SP 16

private Node rebalance(Node node) {
 int balanceFactor = balanceFactor(node);

 // Left-heavy?
 if (balanceFactor < -1) {
 if (balanceFactor(node.left) <= 0) { // Case 1
 // Rotate right
 node = rotateRight(node);
 } else { // Case 2
 // Rotate left-right
 node.left = rotateLeft(node.left);
 node = rotateRight(node);
 }
 }

 // Right-heavy?
 if (balanceFactor > 1) {
 if (balanceFactor(node.right) >= 0) { // Case 3
 // Rotate left
 node = rotateLeft(node);
 } else { // Case 4
 // Rotate right-left
 node.right = rotateRight(node.right);
 node = rotateLeft(node);
 }
 }
 return node;
}

AVL insert() code

Node insertNode(int key, Node node) {

 node = super.insertNode(key, node);

 updateHeight(node);

 return rebalance(node);

}

public class Node {
 int data;
 Node left;
 Node right;
 int height;

 public Node(int data) {
 this.data = data;
 }
}

private void updateHeight(Node node) {
 int leftChildHeight = height(node.left);
 int rightChildHeight = height(node.right);
 node.height = max(leftChildHeight, rightChildHeight) + 1;
}

CSE 373 23SP 17

AVL rotate() code

private Node rotateLeft(Node node) {

 Node rightChild = node.right;

 node.right = rightChild.left;

 rightChild.left = node;

 updateHeight(node);

 updateHeight(rightChild);

 return rightChild;

}

private Node rotateRight(Node node) {

 Node leftChild = node.left;

 node.left = leftChild.right;

 leftChild.right = node;

 updateHeight(node);

 updateHeight(leftChild);

 return leftChild;
}

CSE 373 23SP 18

AVL delete()

● Unfortunately, deletions in an AVL tree are more complicated
● There’s a similar set of rotations that let you rebalance an AVL tree after

deleting an element
○ Beyond the scope of this class
○ You can research on your own if you’re curious!

● In the worst case, takes Θ(log n) time to rebalance after a deletion
○ But finding the node to delete is also Θ(log n), and Θ(2log n) is just a constant

factor. Asymptotically the same time

● We won’t ask you to perform an AVL deletion

CSE 373 23SP 19

AVL Trees

● All operations on an AVL Tree
have a logarithmic worst case
○ Because these trees are always

balanced!
● The act of rebalancing adds

no more than a constant
factor to insert and delete

● Asymptotically, just better
than a normal BST!

● Relatively difficult to
program and debug (so
many moving parts during a
rotation)

● Additional space for the
height field

● Though asymptotically
faster, rebalancing does
take some time
○ Depends how important every

little bit of performance is to
you

PROS CONS

CSE 373 23SP 20

More self balancing techniques

AVLs use rotations to maintain balance

- Balance maintains O(logn) performance

AVL rotations are very complex to implement

Other ways to maintain balance

- Condense multiple data points into a single node
- Two types of connections: red or black

CSE 373 23SP 21

2-3 Trees

Properties:

- 2-nodes have 2 children and store 1 value
- 3-nodes have 3 children and store 2 values
- Data is stored in Binary Search order
- Tree is height balanced

2 9

1 3 7 11 13

K < 2 2 < K < 9 9 < K

CSE 373 23SP 22

2-3 Insertions

15 16

8

6 14

3 7 10 18

1. Insert value into leaf node maintaining BST

2. If node is full, shift middle value up to parent

3. Split leaf node to satisfy required number of children

15 18

8

6 14

3 7 10

16

CSE 373 23SP 23

2-3 Insertions Insert 12 and 13 into the following 2-3 tree

15 18

8

6 14

3 7 10

16

12 15 18

8

6 14

3 7 10

16

12 13

15 18

8

6 14

3 7 10

16

13

12

15 18

8

6

14

3 7 10

16

13

12

CSE 373 23SP 24

2-3 Trees

● All operations on 2-3 Tree
have a logarithmic worst case
○ Because these trees are always

balanced!
● Maintaining balance doesn’t

require complex rotations
● Storing multiple values per

node improves runtime
constants because of memory
locality

● No height triggered
balancing means 2-3 trees
stay a little less balanced
than AVLs on average

● Multiple node types cause
implementation complexity
○ Make all nodes 2 nodes

and you have more
unused space

PROS CONS

CSE 373 23SP 25

Left Leaning Red Black Trees

A translation of 2 3 trees using
nodes with only 1 value

- Red links connect two nodes
that would exist within the
same node in a 2-3 tree

- Black links are “standard”
connections

- Red links are always on the left
- A “balanced” LLRB has the

same number of black links to
leaf
- Red links don’t count towards path

length

15 18

8

6

14

3 7 10

16

13

12

15 18

8

6

14

3 7 10

16

13

12

CSE 373 23SP 26

Your toolbox so far…

ADT
○List – flexibility, easy movement of elements within structure
○Stack – optimized for first in last out ordering
○Queue – optimized for first in first out ordering
○Dictionary (Map) – stores two pieces of data at each entry

Data Structure Implementation
○Array – easy look up, hard to rearrange
○Linked Nodes – hard to look up, easy to rearrange
○Hash Table – constant time look up, no ordering of data
○BST – efficient look up, possibility of bad worst case
○AVL Tree – efficient look up, protects against bad worst case, hard to

implement

<- It’s all about data baby!
SUPER common in comp sci
- Databases
- Network router tables
- Compilers and Interpreters

CSE 373 23SP 27

“left leaning”

4 9 4

9

=

When you “split” the 3 nodes, turn them into a let leaning set

4

9

4

9

=

When you insert new nodes, add to leaf then do any appropriate rotations to ensure left lean

CSE 373 23SP 28

Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:
● AVL tree
● Splay tree
● 2-3 tree
● AA tree
● Red-black tree
● Scapegoat tree
● Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in
the textbook and all of them are online!)

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations

CSE 373 23SP 29

Appendix

CSE 373 23SP 30

Red Black Requirements

- BST Property
- All nodes have an extra field to mark them either “red” or

“black”
- Overallroot is black
- If a node is red, it’s parent and children must be black
- All paths through the tree must have the same number of

black nodes
- Shortest path will be all black nodes
- Longest path will alternate between black and red nodes

CSE 373 23SP 31

Valid Red Black tree

CSE 373 23SP 32

CSE 373 23SP 33

Red Black Tree Insertions

Recoloring

CSE 373 23SP 34

Red Black Insertions

1. Insert node and color it red
a. This may break the root and leaves are black or red nodes must have

black children properties but these are easy inariants to fix
b. This wont break the length of paths must all have same number of black

nodes property

Insertion cases:

1. Node is the root
a. Color node black

2. Node’s uncle is red
a. recolor

3. Node’s uncle is black (Triangle)
a. Rotate node’s parent

4. Node’s uncle is black (line)
a. Rotate nodes’ grandparent & recolor

CSE 373 23SP 35

Node’s uncle is red

Recolor parent, uncle and grandparent

What if the grandparent is the overallRoot?

CSE 373 23SP 36

Uncle is black (triangle)

Rotate inserted Nodes parent in opposite direction of inserted
node

CSE 373 23SP 37

Uncle is black (line)

Rotate node’s grandparent, then recolor

CSE 373 23SP 38

Example

CSE 373 23SP 39

Example

https://www.youtube.com/watch?v=A3JZinzkMpk

CSE 373 23SP 40

Insertion

If parent and uncle of inserted node are red rotate

4 rotation cases (same as AVL)

- Left Left Case

Left Right Case

Right Right Case

Right Left Case

CSE 373 23SP 41

Rotations

CSE 373 23SP 42

Rotations

CSE 373 23SP 43

AVL vs Red Black Trees

- AVLs maintain a more balanced tree
- Insertions and deletions can trigger more rotations than Red Black Tree

-

