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Announcements

● Exercise 2 Due Tonight 
● Exercise 3 releases tonight
● Project 2 out
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Questions?
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BST containsKey()
The AVL Invariant
Rotations
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Binary Trees vs Binary Search Trees:
containsKey(2)
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Binary Trees vs Binary Search Trees: containsKey(2)

public boolean containsKeyBT(node, key) {
   if (node == null) {
      return false;
   } else if (node.key == key) {
      return true;
   } else {
      return containsKeyBT(node.left) ||    
                     containsKeyBT(node.right);
   }
}

public boolean containsKeyBST(node, key) {
   if (node == null) {
      return false;
   } else if (node.key == key) {
      return true;
   } else {
      if (key <= node.key) {
         return containsKeyBST(node.left);
      } else {
         return containsKeyBST(node.right);
      }
   }
}
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BST containsKey runtime
public boolean containsKeyBST(node, key) {
   if (node == null) {
      return false;
   } else if (node.key == key) {
      return true;
   } else {
      if (key <= node.key) {
         return containsKeyBST(node.left);
      } else {
         return containsKeyBST(node.right);
      }
   }
}

For the tree on the right, what are some possible interesting cases (best/worst/other?) that could come up? Consider 
what values of key could affect the runtime

● best: containsKey(8), runtime will be 
O(1) since it will end immediately

● worst: containsKey(-1) since it has 
to traverse all the way down (other 
values will work for this)
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* if tree is balanced we eliminate half the nodes to search at each level ie n/2

containsKey()  is a recursive method -> recurrences!

T(n) =
T(n / 2) + 1 if n > 1

3              otherwise
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We only considered changing the key parameter for that one 
particular BST in our last thought exercise, but what about if we 
consider the different possible arrangements of the BST as well?

Let’s try to come up with a valid BST with the numbers 1 through 
15 (same as previous tree) and key combination that result in a 
worse runtime for containsKey.

Is it possible to do worse than O(log n) 😈 
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15

containsKey(16)

T(n) =
T(n / 2) + 1 if n > 1

3              otherwise

T(n) = Θ(n)
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BST different states
Two different extreme states our BST could be in (there’s in-between, but it’s easiest to focus on the extremes 
as a starting point). Try containsKey(15) to see what the difference is.

Perfectly balanced – for every node, its 
descendants are split evenly between left and 
right subtrees.

Degenerate – for every node, all of its descendants are 
in the right subtree. 
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T(n) = 𝛉(logn)

T(n) =
T(n / 2) + 1 if n > 1

3              otherwise
T(n) =

T(n / 2) + 1 if n > 1

3              otherwise

T(n) = 𝛉(n)
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Can we do better?

Key observation: what ended up being important was the height of the 
tree!
● Height: the number of edges contained in the longest path from root node to any leaf 

node 
● In the worst case, this is the number of recursive calls we’ll have to make

If we can limit the height of our tree, the BST invariant can take care of 
quickly finding the target
● How do we limit?
● Let’s try to find an invariant that forces the height to be short

INVARIANT

INVARIANTIN
VARIA

NT

INVARIANT
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In Search of a “Short BST” Invariant: Take 1

What about this?

BST Height Invariant
The height of the tree must not exceed Θ(logn)

IN
VA

R
IA

N
T

 public void insertBST(node, key) {
     ...
 }

INVARIANT

INVARIANT

● This is technically what we want (would be amazing if true on entry)
● But how do we implement it so it’s true on exit?

○ Should the insertBST method rebuild the entire tree balanced every time?
○ This invariant is too broad to have a clear implementation

● Invariants are tools – more of an art than a science, but we want to 
pick one that is specific enough to be maintainable

??
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Invariant Takeaways

In some ways, this makes sense: only 
restricting a constant number of 
nodes won’t help us with the 
asymptotic runtime ☹

Forcing things to be exactly equal is 
too difficult to maintain

Need requirements everywhere, 
not just at root

Fortunately, it’s a two-way street: from 
the same intuition, it makes sense that 
a constant “amount of imbalance” 
wouldn’t affect the runtime ☺

AVL Invariant
For every node, the height of its left and right 
subtrees may only differ by at most 1IN

VA
R

IA
N

T
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BST containsKey()
The AVL Invariant
Rotations
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The AVL Invariant

AVL Invariant
For every node, the height of its left and right 
subtrees may only differ by at most 1IN

VA
R

IA
N

T

AVL Tree: A Binary Search Tree that also 
maintains the AVL Invariant

• Named after Adelson-Velsky and Landis
• But also A Very Lovable Tree!

Will this have the effect we want?
● If maintained, our tree will have 

height Θ(log n)
● Fantastic! Limiting the height avoids 

the Θ(n) worst case

Can we maintain this?
We’ll need a way to fix this 
property when violated in insert 
and delete
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AVL Trees

AVL Trees must satisfy the following properties: 
○binary trees: all nodes must have between 0 and 2 children
○binary search tree: for all nodes, all keys in the left subtree must be smaller and 

all keys in the right subtree must be larger than the root node
○balanced: for all nodes, there can be no more than a difference of 1 in the 

height of the left subtree from the right. Math.abs(height(left subtree) – 
height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)
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Measuring Balance

Measuring balance:
● For each node, compare the heights of its two sub trees
● Balanced when the difference in height between sub trees is no greater than 1

10

15

12 18

8

7

7
8

7 9

Balanced

Unbalanced

Balanced

Balanced



CSE 373 23SP  18

Is this a valid AVL tree?
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Is it…
- Binary
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- Balanced?
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yes
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Is this a valid AVL tree?
6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0
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Maintaining the Invariant

 public boolean containsKey(node, key) {
    // find key
 }

INVARIANT

INVARIANT

 public boolean insert(node, key) {
    // find where key would go
    // insert
 }

INVARIANT

INVARIANT??

containsKey benefits from invariant: 
at worst Θ(log n) time

containsKey doesn’t modify anything, 
so the invariant holds after being called

insert benefits from invariant:
at worst Θ(log n) time to find location for key

But needs to maintain the invariant

How?
● Track heights of subtrees
● Detect any imbalance
● Restore balance
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BST containsKey()
The AVL Invariant
Rotations
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Insertion

What happens if when we do an insertion, we break the AVL condition?
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The AVL rebalances itself!

AVL are a type of “Self Balancing Tree”
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Fixing AVL Invariant
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Fixing AVL Invariant: Left Rotation
In general, we can fix the AVL invariant by performing rotations wherever 
an imbalance was created

Left Rotation
● Find the node that is violating the invariant (here,      )
● Let it “fall” left to become a left child

1

5

8

h:2

h:1
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5

8

h:1

h:0h:0

1

Apply a left rotation whenever the newly inserted node is located under the 
right child of the right child
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Left Rotation: More Precisely

Subtrees are okay! They just come along for the ride.
● Only subtree 2 needs to hop – but notice that its relationship with nodes A and B 

doesn’t change in the new position!
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A < 2 2 < B
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A < 2 2 < B
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...
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3

Right Rotation

Right Rotation
● Mirror image of Left Rotation!
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It Gets More Complicated

1

3

2

Can’t do a left rotation
Do a “right” rotation around 3 first. 
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3
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Now do a left rotation.
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There’s a “kink” in 
the tree where the 
insertion 
happened.
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Not Quite as Straightforward

What if there’s a “kink” in the tree where the insertion happened?

Can we apply a Left Rotation?
● No, violates the BST invariant!
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Right/Left Rotation

Solution: Right/Left Rotation
● First rotate the bottom to the right, then rotate the whole thing to the left
● Easiest to think of as two steps
● Preserves BST invariant!
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Right/Left Rotation: More Precisely

Again, subtrees are invited to come with
○Now 2 and 3 both have to hop, but all BST ordering properties are still preserved (see 

below)
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Left/Right Rotation

Left/Right Rotation
○Mirror image of Right/Left Rotation! 
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11

8

11

9

10

12



CSE 373 23SP  37

AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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Two AVL Cases

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink Resolution
Rotate subtree left
Rotate root tree right

Left Kink Resolution
Rotate subtree right
Rotate root tree left
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How Long Does Rebalancing Take?

● Assume we store in each node the height of its subtree.
○ How do we find an unbalanced node?
○ Just go back up the tree from where we inserted.

● How many rotations might we have to do?
○ Just a single or double rotation on the lowest unbalanced node. 
○ A rotation will cause the subtree rooted where the rotation 

happens to have the same height it had before insertion

○ log(n) time to traverse to a leaf of the tree
○ log(n) time to find the imbalanced node
○ constant time to do the rotation(s)
○ Theta(log(n)) time for put (the worst case for all interesting + 

common AVL methods (get/containsKey/put is logarithmic 
time) 
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AVL insert(): Approach

Our overall algorithm:
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the 

new leaf:
○ The insertion may (or may not) have changed the node’s 

height
○ Detect height imbalance and perform a rotation to restore 

balance

Facts that make this easier:
● Imbalances can only occur along the path from the new leaf to the 

root
● We only have to address the lowest unbalanced node
● Applying a rotation (or double rotation), restores the height of the 

subtree before the insertion -- when everything was balanced!
● Therefore, we need at most one rebalancing operation
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...

(1) Originally, whole tree 
balanced, and this subtree 
has height 2

(2) Insertion creates 
imbalance(s), including 
the subtree (8 is lowest 
unbalanced node)

(3) Since the rotation on 8 will 
restore the subtree to height 
2, whole tree balanced again!

2
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AVL delete()

● Unfortunately, deletions in an AVL tree are more complicated
● There’s a similar set of rotations that let you rebalance an AVL tree after 

deleting an element
○ Beyond the scope of this class
○ You can research on your own if you’re curious!

● In the worst case, takes Θ(log n) time to rebalance after a deletion
○ But finding the node to delete is also Θ(log n), and Θ(2log n) is just a constant 

factor. Asymptotically the same time

● We won’t ask you to perform an AVL deletion
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AVL Trees

● All operations on an AVL Tree 
have a logarithmic worst case
○ Because these trees are always 

balanced!
● The act of rebalancing adds 

no more than a constant 
factor to insert and delete

● Asymptotically, just better 
than a normal BST!

● Relatively difficult to 
program and debug (so 
many moving parts during a 
rotation)

● Additional space for the 
height field

● Though asymptotically 
faster, rebalancing does 
take some time
○ Depends how important every 

little bit of performance is to 
you

PROS CONS
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Questions?
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That’s all!


