
 1CSE 373 23SP

Lecture 10: AVL Trees CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

6

3 8

2 4 10

12 1151

7

Binary Tree?

BST Invariant?

Balanced?

Yes

No

Yes

Slido Event #3285614
https://app.sli.do/event/93b
XKnWncn1YfXPXVDQXZ7

https://app.sli.do/event/93bXKnWncn1YfXPXVDQXZ7
https://app.sli.do/event/93bXKnWncn1YfXPXVDQXZ7

CSE 373 23SP 3

Announcements

● Exercise 2 Due Tonight
● Exercise 3 releases tonight
● Project 2 out

CSE 373 23SP 4

Questions?

CSE 373 23SP 5

BST containsKey()
The AVL Invariant
Rotations

CSE 373 23SP 6

Binary Trees vs Binary Search Trees:
containsKey(2)

32

11 9

50 8 2

5 10

38

10

8 32

2 11 50

5 38

9

Nodes Examined

CSE 373 23SP 7

Binary Trees vs Binary Search Trees: containsKey(2)

public boolean containsKeyBT(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 return containsKeyBT(node.left) ||
 containsKeyBT(node.right);
 }
}

public boolean containsKeyBST(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 if (key <= node.key) {
 return containsKeyBST(node.left);
 } else {
 return containsKeyBST(node.right);
 }
 }
}

10

9 18

14

13 15

2

1 3

6

5 7

4 12

8

CSE 373 23SP 8

BST containsKey runtime
public boolean containsKeyBST(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 if (key <= node.key) {
 return containsKeyBST(node.left);
 } else {
 return containsKeyBST(node.right);
 }
 }
}

For the tree on the right, what are some possible interesting cases (best/worst/other?) that could come up? Consider
what values of key could affect the runtime

● best: containsKey(8), runtime will be
O(1) since it will end immediately

● worst: containsKey(-1) since it has
to traverse all the way down (other
values will work for this)

10

9 18

14

13 15

2

1 3

6

5 7

4 12

8

* if tree is balanced we eliminate half the nodes to search at each level ie n/2

containsKey() is a recursive method -> recurrences!

T(n) =
T(n / 2) + 1 if n > 1

3 otherwise

CSE 373 23SP 9

We only considered changing the key parameter for that one
particular BST in our last thought exercise, but what about if we
consider the different possible arrangements of the BST as well?

Let’s try to come up with a valid BST with the numbers 1 through
15 (same as previous tree) and key combination that result in a
worse runtime for containsKey.

Is it possible to do worse than O(log n) 😈

1

2

3

4
…

15

containsKey(16)

T(n) =
T(n / 2) + 1 if n > 1

3 otherwise

T(n) = Θ(n)

CSE 373 23SP 10

BST different states
Two different extreme states our BST could be in (there’s in-between, but it’s easiest to focus on the extremes
as a starting point). Try containsKey(15) to see what the difference is.

Perfectly balanced – for every node, its
descendants are split evenly between left and
right subtrees.

Degenerate – for every node, all of its descendants are
in the right subtree.

10

9 18

14

13 15

2

1 3

6

5 7

4 12

8

3

4

2

1

15

…

T(n) = 𝛉(logn)

T(n) =
T(n / 2) + 1 if n > 1

3 otherwise
T(n) =

T(n / 2) + 1 if n > 1

3 otherwise

T(n) = 𝛉(n)

CSE 373 23SP 11

Can we do better?

Key observation: what ended up being important was the height of the
tree!
● Height: the number of edges contained in the longest path from root node to any leaf

node
● In the worst case, this is the number of recursive calls we’ll have to make

If we can limit the height of our tree, the BST invariant can take care of
quickly finding the target
● How do we limit?
● Let’s try to find an invariant that forces the height to be short

INVARIANT

INVARIANTIN
VARIA

NT

INVARIANT

CSE 373 23SP 12

In Search of a “Short BST” Invariant: Take 1

What about this?

BST Height Invariant
The height of the tree must not exceed Θ(logn)

IN
VA

R
IA

N
T

 public void insertBST(node, key) {
 ...
 }

INVARIANT

INVARIANT

● This is technically what we want (would be amazing if true on entry)
● But how do we implement it so it’s true on exit?

○ Should the insertBST method rebuild the entire tree balanced every time?
○ This invariant is too broad to have a clear implementation

● Invariants are tools – more of an art than a science, but we want to
pick one that is specific enough to be maintainable

??

CSE 373 23SP 13

Invariant Takeaways

In some ways, this makes sense: only
restricting a constant number of
nodes won’t help us with the
asymptotic runtime ☹

Forcing things to be exactly equal is
too difficult to maintain

Need requirements everywhere,
not just at root

Fortunately, it’s a two-way street: from
the same intuition, it makes sense that
a constant “amount of imbalance”
wouldn’t affect the runtime ☺

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1IN

VA
R

IA
N

T

CSE 373 23SP 14

BST containsKey()
The AVL Invariant
Rotations

CSE 373 23SP 15

The AVL Invariant

AVL Invariant
For every node, the height of its left and right
subtrees may only differ by at most 1IN

VA
R

IA
N

T

AVL Tree: A Binary Search Tree that also
maintains the AVL Invariant

• Named after Adelson-Velsky and Landis
• But also A Very Lovable Tree!

Will this have the effect we want?
● If maintained, our tree will have

height Θ(log n)
● Fantastic! Limiting the height avoids

the Θ(n) worst case

Can we maintain this?
We’ll need a way to fix this
property when violated in insert
and delete

CSE 373 23SP 16

AVL Trees

AVL Trees must satisfy the following properties:
○binary trees: all nodes must have between 0 and 2 children
○binary search tree: for all nodes, all keys in the left subtree must be smaller and

all keys in the right subtree must be larger than the root node
○balanced: for all nodes, there can be no more than a difference of 1 in the

height of the left subtree from the right. Math.abs(height(left subtree) –
height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 23SP 17

Measuring Balance

Measuring balance:
● For each node, compare the heights of its two sub trees
● Balanced when the difference in height between sub trees is no greater than 1

10

15

12 18

8

7

7
8

7 9

Balanced

Unbalanced

Balanced

Balanced

CSE 373 23SP 18

Is this a valid AVL tree?
7

4 10

3 9 125

8 11 13

14

2 6

Is it…
- Binary
- BST
- Balanced?

yes
yes
yes

CSE 373 23SP 19

Is this a valid AVL tree?
6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0

CSE 373 23SP 20

Maintaining the Invariant

 public boolean containsKey(node, key) {
 // find key
 }

INVARIANT

INVARIANT

 public boolean insert(node, key) {
 // find where key would go
 // insert
 }

INVARIANT

INVARIANT??

containsKey benefits from invariant:
at worst Θ(log n) time

containsKey doesn’t modify anything,
so the invariant holds after being called

insert benefits from invariant:
at worst Θ(log n) time to find location for key

But needs to maintain the invariant

How?
● Track heights of subtrees
● Detect any imbalance
● Restore balance

CSE 373 23SP 21

BST containsKey()
The AVL Invariant
Rotations

CSE 373 23SP 22

Insertion

What happens if when we do an insertion, we break the AVL condition?

1

2

3 1

2

3

The AVL rebalances itself!

AVL are a type of “Self Balancing Tree”

CSE 373 23SP 23

Fixing AVL Invariant

1

5

8

h:2

h:1

h:0h:01

CSE 373 23SP 24

Fixing AVL Invariant: Left Rotation
In general, we can fix the AVL invariant by performing rotations wherever
an imbalance was created

Left Rotation
● Find the node that is violating the invariant (here,)
● Let it “fall” left to become a left child

1

5

8

h:2

h:1

h:0 1

5

8

h:1

h:0h:0

1

Apply a left rotation whenever the newly inserted node is located under the
right child of the right child

CSE 373 23SP 25

Left Rotation: More Precisely

Subtrees are okay! They just come along for the ride.
● Only subtree 2 needs to hop – but notice that its relationship with nodes A and B

doesn’t change in the new position!

A

1

2

3 4

B

C

A < 2 2 < B

A

1 2 3 4

B

C

A < 2 2 < B

A

2

NODE

SUBTREE

...

...

CSE 373 23SP 26

3

Right Rotation

Right Rotation
● Mirror image of Left Rotation!

A

1 2

4

B

C

B < 3 3 < A

A

1 2 3 4

B

C

A

2

NODE

SUBTREE

B < 3 3 < A

...

...

CSE 373 23SP 27

6

8

1 3

10

9

72

4

5

11

CSE 373 23SP 28

9

7

4

8

6

5

1 3

2

10

11

CSE 373 23SP 29

It Gets More Complicated

1

3

2

Can’t do a left rotation
Do a “right” rotation around 3 first.

1

3

2

Now do a left rotation.

1

2

3

There’s a “kink” in
the tree where the
insertion
happened.

CSE 373 23SP 30

Not Quite as Straightforward

What if there’s a “kink” in the tree where the insertion happened?

Can we apply a Left Rotation?
● No, violates the BST invariant!

1

5

3

h:2

h:1

h:0 1

5

3

h:1

h:0h:0

CSE 373 23SP 31

Right/Left Rotation

Solution: Right/Left Rotation
● First rotate the bottom to the right, then rotate the whole thing to the left
● Easiest to think of as two steps
● Preserves BST invariant!

1

5

3

h:2

h:1

h:0

1

3

5

h:1

h:0h:0

1

3

5

h:2

h:1

h:0

CSE 373 23SP 32

Right/Left Rotation: More Precisely

Again, subtrees are invited to come with
○Now 2 and 3 both have to hop, but all BST ordering properties are still preserved (see

below)

A

1

2 3

4

B

C

A < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < B A < 2 2 < C C < 3 3 < B

...

...

CSE 373 23SP 33

Left/Right Rotation

Left/Right Rotation
○Mirror image of Right/Left Rotation!

A

1

2 3

4
B

C

B < 2 2 < C

A

1 2 3 4

C

B

A

2

NODE

SUBTREE

C < 3 3 < A B < 2 2 < C C < 3 3 < A

...

...

CSE 373 23SP 34

AVL Example: 8,9,10,12,11

8

9

10

CSE 373 23SP 35

AVL Example: 8,9,10,12,11

8

9

10

CSE 373 23SP 36

AVL Example: 8,9,10,12,11

8

11

9

10

12

CSE 373 23SP 37

AVL Example: 8,9,10,12,11

8

11

9

10

12

CSE 373 23SP 38

AVL Example: 8,9,10,12,11

8

9

10

11

12

CSE 373 23SP 39

AVL Example: 8,9,10,12,11

8

9

10

11

12

CSE 373 23SP 40

Two AVL Cases

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink Resolution
Rotate subtree left
Rotate root tree right

Left Kink Resolution
Rotate subtree right
Rotate root tree left

CSE 373 23SP 41

How Long Does Rebalancing Take?

● Assume we store in each node the height of its subtree.
○ How do we find an unbalanced node?
○ Just go back up the tree from where we inserted.

● How many rotations might we have to do?
○ Just a single or double rotation on the lowest unbalanced node.
○ A rotation will cause the subtree rooted where the rotation

happens to have the same height it had before insertion

○ log(n) time to traverse to a leaf of the tree
○ log(n) time to find the imbalanced node
○ constant time to do the rotation(s)
○ Theta(log(n)) time for put (the worst case for all interesting +

common AVL methods (get/containsKey/put is logarithmic
time)

CSE 373 23SP 42

AVL insert(): Approach

Our overall algorithm:
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the

new leaf:
○ The insertion may (or may not) have changed the node’s

height
○ Detect height imbalance and perform a rotation to restore

balance

Facts that make this easier:
● Imbalances can only occur along the path from the new leaf to the

root
● We only have to address the lowest unbalanced node
● Applying a rotation (or double rotation), restores the height of the

subtree before the insertion -- when everything was balanced!
● Therefore, we need at most one rebalancing operation

6

8

10

9 12

11

7

...

...

(1) Originally, whole tree
balanced, and this subtree
has height 2

(2) Insertion creates
imbalance(s), including
the subtree (8 is lowest
unbalanced node)

(3) Since the rotation on 8 will
restore the subtree to height
2, whole tree balanced again!

2

CSE 373 23SP 43

AVL delete()

● Unfortunately, deletions in an AVL tree are more complicated
● There’s a similar set of rotations that let you rebalance an AVL tree after

deleting an element
○ Beyond the scope of this class
○ You can research on your own if you’re curious!

● In the worst case, takes Θ(log n) time to rebalance after a deletion
○ But finding the node to delete is also Θ(log n), and Θ(2log n) is just a constant

factor. Asymptotically the same time

● We won’t ask you to perform an AVL deletion

CSE 373 23SP 44

AVL Trees

● All operations on an AVL Tree
have a logarithmic worst case
○ Because these trees are always

balanced!
● The act of rebalancing adds

no more than a constant
factor to insert and delete

● Asymptotically, just better
than a normal BST!

● Relatively difficult to
program and debug (so
many moving parts during a
rotation)

● Additional space for the
height field

● Though asymptotically
faster, rebalancing does
take some time
○ Depends how important every

little bit of performance is to
you

PROS CONS

CSE 373 23SP 45

Questions?

CSE 373 23SP 46

That’s all!

