
 1CSE 373 23SP

Lecture 09: Binary Search
Trees

CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

Consider a StringDictionary using separate chaining with an initial capacity of 5, but
will resize before λ=1 by doubling the current capacity. Assume our buckets are implemented
using a LinkedList. Use the following hash function:

public int hashCode(String input) {
 return input.length();
}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“a”, 1) (“ab”, 2) (“ccccc”, 3) (“abcabc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)
0 1 2 3 4

(“a”, 1)(“ccccc”, 3)

(“abcabc”, 4)

(“ab”, 2)

Slido Event #2357722
https://app.sli.do/event/bQQ
DgvkWCLE521e1Nurgfc

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“hello world”, 8)

(“abcdabcd”, 6)(“ab”, 2) (“ccccc”, 3) (“abcabc”, 4)

(“five”, 7)

https://app.sli.do/event/bQQDgvkWCLE521e1Nurgfc
https://app.sli.do/event/bQQDgvkWCLE521e1Nurgfc

CSE 373 23SP 3

Announcements

● Project 2 out now, due Wednesday 4/26
● Project 1 turn in closes on Saturday
● Exercise 2 due on Monday at 11:59PM

CSE 373 23SP 4

Java’s hashCode function

All Java Objects must include a hashCode function:

public int hashCode();

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by
HashMap.

The general contract of hashCode is:
- Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode

method must consistently return the same integer, provided no information used in equals comparisons on the object is
modified. This integer need not remain consistent from one execution of an application to another execution of the same
application.

- If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the
two objects must produce the same integer result.

- It is not required that if two objects are unequal according to the equals(java.lang.Object) method, then calling the
hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be
aware that producing distinct integer results for unequal objects may improve the performance of hash tables.

From official Oracle Java documentation:

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

CSE 373 23SP 5

Java and Hash Functions

● Object class includes default functionality:
○ int equals(Object other)
○ int hashCode()

● If you want to implement your own hashCode you should:
○ Override BOTH hashCode() and equals()

● If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true
○ This is how Java knows to replace the value associated with the key or to

add a new key to the bucket

● That requirement is part of the Object interface
○ Other people’s code will assume you’ve followed this rule.

● Java’s HashMap (and HashSet) will assume you follow these rules and
conventions for your custom objects if you want to use your custom objects
as keys.

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

CSE 373 23SP 6

Questions?

CSE 373 23SP 7

Linear Probing
Quadratic Probing
Double Hashing
Summary

CSE 373 23SP 8

Handling Collisions

Solution 2: Open Addressing

Resolves collisions by choosing a different location to store a value if natural choice is
already full.

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot.

int findFinalLocation(Key s) {
 int naturalHash = this.hashCode(s);
 int index = naturalHash % array.length;

 while (index in use) {

 i++;

 index = (naturalHash + i) % array.length;
 }
 return index;
}

CSE 373 23SP 9

Linear Probing

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size
and linear probing to resolve collisions
1, 5, 11, 7, 12, 17, 6, 25

1 511 712 176 25

CSE 373 23SP 10

Primary Clustering

When probing causes long chains of
occupied slots within a hash table

Linear Probing

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size
and linear probing to resolve collisions
38, 19, 8, 109, 10

38 198 109 10

Problem:
● Linear probing causes clustering
● Clustering causes more looping when probing

CSE 373 23SP 11

Runtime

When is runtime good?

When we hit an empty slot
● (or an empty slot is a very short distance away)

When is runtime bad?

When we hit a “cluster”

Maximum Load Factor?

λ at most 1.0

When do we resize the array?

λ ≈ ½ is a good rule of thumb

CSE 373 23SP 12

Can we do better?
Clusters are caused by picking new space near the natural index

Solution 2: Open Addressing (still)

Type 2: Quadratic Probing

Instead of checking i past the original location, check i² from the
original location

int findFinalLocation(Key s)
int naturalHash = this.hashCode(s);
int index = naturalHash % array.length;
while (index in use) {

i++;
index = (naturalHash + i*i) % array.length;

}
return index;

CSE 373 23SP 13

Linear Probing
Quadratic Probing
Double Hashing
Summary

CSE 373 23SP 14

Quadratic Probing

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

891849

Insert the following values into the Hash Table using a hashFunction of % table size
and quadratic probing to resolve collisions
89, 18, 49, 58, 79, 27

58 79

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!
Can still get clusters

27

Now try to insert 9.

Uh-oh(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

CSE 373 23SP 15

Quadratic Probing

There were empty spots. What Gives?

Quadratic probing is not guaranteed to check every possible spot
in the hash table

The following is true:

Notice we have to assume p is prime to get that guarantee

If the table size is a prime number p, then the first p/2 probes check distinct indices.

CSE 373 23SP 16

Secondary Clustering

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
19, 39, 29, 9

39 29 199

Secondary Clustering

When using quadratic probing, you
sometimes need to probe the same
sequence of table cells, not necessarily
next to one another

CSE 373 23SP 17

Probing

h(k) = the natural hash
h’(k, i) = resulting hash after probing
i = iteration of the probe
T = table size

Linear Probing:

h’(k, i) = (h(k) + i) % T

Quadratic Probing

h’(k, i) = (h(k) + i2) % T

CSE 373 23SP 18

Questions?
Topics Covered:
● Writing good hash functions
● Open addressing to resolve collisions:

○ Linear probing
○ Quadratic probing

CSE 373 23SP 19

Linear Probing
Quadratic Probing
Double Hashing
Summary

CSE 373 23SP 20

Double Hashing

Probing causes us to check the same indices over and over- can we
check different ones instead?

Use a second hash function!

h’(k, i) = (h(k) + i * g(k)) % T

int findFinalLocation(Key s)
 int naturalHash = this.getHash(s);
 int index = natrualHash % TableSize;

while (index in use) {
i++;

 index = (naturalHash + i*jumpHash(s)) % TableSize;
}
return index;

<- Most effective if g(k) returns value relatively prime to table size

CSE 373 23SP 21

Resizing: Open Addressing

How do we resize? Same as separate chaining
● Remake the table
● Evaluate the hash function over again
● Re-insert

When to resize?
● Depending on our load factor λ AND our probing strategy

○ If λ = 1, put with a new key fails for linear probing
○ If λ ﹥1/2, put with a new key might fail for quadratic probing, even with a prime

tableSize
■ And it might fail earlier with a non-prime size

○ If λ = 1, put with a new key fails for double hashing
■ And it might fail earlier if the second hash isn’t relatively prime with the tableSize

CSE 373 23SP 22

Summary

1. Pick a hash function to:
● Avoid collisions
● Uniformly distribute data
● Reduce hash computational costs

2. Pick a collision strategy
● Chaining
● LinkedList
● AVL Tree
● Probing
● Linear
● Quadratic
● Double Hashing

No clustering
Potentially more “compact” (λ can be higher)

Managing clustering can be tricky
Less compact (keep λ < ½)
Array lookups tend to be a constant factor faster than traversing
pointers

CSE 373 23SP 23

Summary

Separate Chaining
● Easy to implement
● Running times O(1+λ) in practice

Open Addressing
● Uses less memory (usually)
● Various schemes:

○ Linear Probing - easiest, but lots of clusters
○ Quadratic Probing - middle ground, but need to be more careful about λ
○ Double Hashing - need a whole new hash function, but low chance of

clustering
Which one you use depends on your application and what you’re worried
about

CSE 373 23SP 24

Java’s HashMap Implementation

● default array capacity is 16
○ Iteration over collection views requires time proportional to the

"capacity" of the HashMap instance (the number of buckets) plus its size
(the number of key-value mappings). Thus, it's very important not to set
the initial capacity too high - Javadocs

● resizes at load factor 0.75
○ As a general rule, the default load factor (.75) offers a good tradeoff

between time and space costs. Higher values decrease the space
overhead but increase the lookup cost - Javadocs

● uses separate-chaining collision resolution
○ Initially uses LinkedLists as the buckets
○ After 8 collisions across the table at the next resize the buckets will be

created as balanced trees to reduce runtime of possible worst case
scenario - Javarevisited

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://javarevisited.blogspot.com/2016/01/how-does-java-hashmap-or-linkedhahsmap-handles.html#axzz7yfttgcFu

CSE 373 23SP 25

Fingerprinting
git hashes (“identification”)
● That crazy number that is attached to each of your

commits
● SHA-1 hash incorporates the contents of your change, the

name of the files and the lines of the files you changes
Ad Tracking
● Track who has seen an ad if they saw it on a different

device (if they saw it on their phone don’t want to show it
on their laptop)

● https://panopticlick.eff.org will show you what is being
hashed about you

YouTube Content ID
● Do two files contain the same thing? Copyright

infringement
● Change the files a bit!

Other Hashing Applications

We use it for hash tables but there are lots of uses! Hashing is a really good way of taking
arbitrary data and creating a succinct and unique summary of data.
Caching
● You’ve downloaded a large video file, You want to

know if a new version is available, Rather than
re-downloading the entire file, compare your file’s
hash value with the server's hash value.

File Verification / Error Checking
● Compare the hash of a file instead of the file itself
● Find similar substrings in a large collection of

strings – detecting plagiarism
Cryptography
Hashing also ”hides” the data by translating it, this can
be used for security
● For password verification: Storing passwords in

plaintext is insecure. So your passwords are
stored as a hash

● Digital signatures

https://panopticlick.eff.org/

CSE 373 23SP 26

Binary Search Trees

CSE 373 23SP 27

Binary Trees
A tree is a collection of nodes

○ Each node has at most 1 parent and anywhere from 0 to 2 children
○ pretty similar to node based structures we’ve seen before (linked-lists)

public class Node<K> {
 K data;
 Node<K> left;
 Node<K> right;
}

Root node: the single node with no parent, “top” of the tree.
Often called the ‘overallRoot’

Leaf node: a node with no children

Subtree: a node and all it descendants

Height: the number of edges contained in the longest path
from root node to some leaf node

1

2 5

3 6 7

4 8

CSE 373 23SP 28

Tree Height
What is the height (the number of edges contained in the longest path from
root node to some leaf node) of the following binary trees?

1

2 5

7

7

overallRoot overallRoot overallRoot

null

Height = 2 Height = 0 Height = -1 or NA

CSE 373 23SP 29

Other Useful Binary Tree Numbers

h=3

 For a binary tree of height h:

Max number of leaves: 2^h
Max number of nodes: 2^(h + 1) - 1

Max number of leaves: 1
Max number of nodes: h + 1

CSE 373 23SP 30

Binary Search Tree (BST)

10

8 32

2 11 50

5 38

9

Invariants (A.K.A. rules for your data structure)
● Things that are always true. If they’re always true,

you can assume them so that you can write simpler
and more efficient code.

● You can also check invariants at the
ends/beginnings of your methods to ensure that
your state is valid and that everything is working

Binary Search Tree invariants:
● For every node with key k:

○ The left subtree has only keys smaller than k
○ The right subtree has only keys greater than k

CSE 373 23SP 31

BST Ordering Applies Recursively

9

3 10

1 5 30
9

3 10

1 5 30

< 9 > 9

9

3 10

1 5 30

< 9 > 9

< 3 & < 9 > 3 & < 9

CSE 373 23SP 32

Aside Anything Can Be a Map
Want to make a tree implement the Map ADT?
○No problem – just add a value field to the nodes, so each node represents a key/value

pair.

public class Node<K, V> {
 K key;
 V value;
 Node<K, V> left;
 Node<K, V> right;
}

For simplicity, we’ll just talk about the keys
○ Interactions between nodes are based off of keys (e.g. BST sorts by keys)
○ In other words, keys determine where the nodes go

1

aqua

CSE 373 23SP 33

Binary Tree vs. BST: containsKey(5)

10

9 1

3 2 30

14 5

9

3 10

1 5 30

2 14

Without BST Invariant With BST Invariant

Nodes that
are searched

CSE 373 23SP 34

Binary Trees vs Binary Search Trees:
containsKey(2)

32

11 9

50 8 2

5 10

38

10

8 32

2 11 50

5 38

9

CSE 373 23SP 35

Binary Trees vs Binary Search Trees: containsKey(2)

public boolean containsKeyBT(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 return containsKeyBT(node.left) ||
 containsKeyBT(node.right);
 }
}

public boolean containsKeyBST(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 if (key <= node.key) {
 return containsKeyBST(node.left);
 } else {
 return containsKeyBST(node.right);
 }
 }
}

10

9 18

14

13 15

2

1 3

6

5 7

4 12

8

CSE 373 23SP 36

BST containsKey runtime
public boolean containsKeyBST(node, key) {
 if (node == null) {
 return false;
 } else if (node.key == key) {
 return true;
 } else {
 if (key <= node.key) {
 return containsKeyBST(node.left);
 } else {
 return containsKeyBST(node.right);
 }
 }
}

For the tree on the right, what are some possible interesting cases (best/worst/other?) that could come up? Consider
what values of key could affect the runtime

● best: containsKey(8), runtime will be
O(1) since it will end immediately

● worst: containsKey(-1) since it has
to traverse all the way down (other
values will work for this)

10

9 18

14

13 15

2

1 3

6

5 7

4 12

8

* if tree is balanced we eliminate half the nodes to search at each level ie n/2

CSE 373 23SP 37

We only considered changing the key parameter for that one
particular BST in our last thought exercise, but what about if we
consider the different possible arrangements of the BST as well?

Let’s try to come up with a valid BST with the numbers 1 through
15 (same as previous tree) and key combination that result in a
worse runtime for containsKey.

Is it possible to do worse than O(log n) 😈

1

2

3

4
…

15

containsKey(16)

CSE 373 23SP 38

BST different states
Two different extreme states our BST could be in (there’s in-between, but it’s easiest to focus on the extremes
as a starting point). Try containsKey(15) to see what the difference is.

Perfectly balanced – for every node, its
descendants are split evenly between left and
right subtrees.

Degenerate – for every node, all of its descendants are
in the right subtree.

10

9 18

14

13 15

2

1 3

6

5 7

4 12

8

3

4

2

1

15

…

T(n) = 𝛉(logn)

CSE 373 23SP 39

Questions?
So far:
● Binary Trees, definitions
● Binary Search Tree, invariants
● Best/Worst case runtimes for BTs and BSTs

○ where the key is located
○ how the tree is structured

CSE 373 23SP 40

How are we going to make this simpler/more
efficient? Let’s enforce some invariants!

Observation: What was important was actually the height of the tree.
● Height: number of edges on the longest path from the root to a leaf.

That’s the number of recursive calls we’re going to make
● And each recursive call does a constant number of operations.

The BST invariant makes it easy to know where to find a key

But it doesn’t force the tree to be short.

Let’s add an invariant that forces the height to be short!

CSE 373 23SP 41

Invariants
Why not just make the invariant “keep the height of the tree at most O(log n)”?

The invariant needs to be easy to maintain.

Every method we write needs to ensure it doesn’t break it.
Can we keep that invariant true without making a bunch of other methods slow?

It’s not obvious…

Writing invariants is more art than science
● Learning that art is beyond the scope of the course
● But we’ll talk a bit about how you might have come up with a good invariant (so our ideas are

motivated)

When writing invariants, we usually start by asking “can we maintain this” then ask “is it
strong enough to make our code as efficient as we want?”

CSE 373 23SP 42

Avoiding 𝚹(n) Behavior

● Here are some invariants you might try.
Can you maintain them? If not what can go wrong?

● Do you think they are strong enough to make containsKey efficient?
● Try to come up with BSTs that show these rules aren’t useful / too strict.

Root Balanced: The root must have the same number of nodes in its left and
right subtrees

Recursively Balanced: Every node must have the same number of nodes in
its left and right subtrees.

Root Height Balanced: The left and right subtrees of the root must have the
same height.

Take 1 minute to consider this question and then
discuss with those around you!

CSE 373 23SP 43

Avoiding 𝚹(n) Behavior

Root Balanced: The root must have the same
number of nodes in its left and right subtrees

Recursively Balanced: Every node must have the
same number of nodes in its left and right
subtrees.

Root Height Balanced: The left and right subtrees
of the root must have the same height.

too weak

too strong

too weak

Takeaways
● Need requirements everywhere, not just at root
● Forcing things to be exactly equal is too difficult to maintain.

CSE 373 23SP 44

Invariant Lessons

● Need requirements everywhere, not just at root
● Forcing things to be exactly equal is too difficult to

maintain.

CSE 373 23SP 45

Roadmap

● Binary Trees
● Binary Search Trees, invariants

○ runtimes
● AVL Trees, invariants

CSE 373 23SP 46

Questions?

CSE 373 23SP 47

That’s all!

CSE 373 23SP 48

Avoiding the Degenerate Tree

AVL invariant: For every node, the height of its left subtree and right
subtree differ by at most 1.

An AVL tree is a binary search tree that also meets the following invariant

CSE 373 23SP 49

Practice w AVL invariants
AVL invariant: For every node, the height of its left subtree and right
subtree differ by at most 1.

Is this a valid AVL tree?

5

6

9

8 10

2

3 7

4

CSE 373 23SP 50

Are These AVL Trees?

9

8 10

2

3 7

6

4

5

9

8 10

2

3 7

4

6 5

CSE 373 23SP 51

Insertion

What happens if when we do an insertion, we break the AVL condition?

1

2

3
1

2

3

CSE 373 23SP 52

Left Rotation

x

y

z

Rest of
the tree UNBALANCED

Right subtree is 2 longer

A
B

C D

x

y

z

Rest of
the tree

A B
C D

BALANCED
Right subtree is 1 longer

CSE 373 23SP 53

6

8

1 3

10

9

72

4

5

11

CSE 373 23SP 54

6

8

1 3

10

9

72

4

5

11

CSE 373 23SP 55

9

7

4

8

6

5

1 3

2

10

11

CSE 373 23SP 56

Meme break (it’s from some marvel movie that I
haven’t watched -- you’re not alone if you don’t get
this reference)

CSE 373 23SP 57

Right rotation

1

2

3

1

2

3

Just like a left rotation, just reflected.

CSE 373 23SP 58

It Gets More Complicated

1

3

2

Can’t do a left rotation
Do a “right” rotation around 3 first.

1

3

2

Now do a left rotation.

1

2

3

There’s a “kink” in
the tree where the
insertion happened.

CSE 373 23SP 59

Right Left Rotation

x

z

yA

B C

D

x

y

z

A B

C D

BALANCED
Right subtree is 1 longerUNBALANCED

Right subtree is 2 longer

Left subtree is
 1 longer

Rest of
the tree

Rest of
the tree

CSE 373 23SP 60

AVL Example: 8,9,10,12,11

8

9

10

CSE 373 23SP 61

AVL Example: 8,9,10,12,11

61

8

9

10

CSE 373 23SP 62

AVL Example: 8,9,10,12,11

62

8

11

9

10

12

CSE 373 23SP 63

AVL Example: 8,9,10,12,11

8

11

9

10

12

CSE 373 23SP 64

AVL Example: 8,9,10,12,11

8

9

10

11

12

CSE 373 23SP 65

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?

How many rotations might we have to do?

CSE 373 23SP 66

How Long Does Rebalancing Take?

● Assume we store in each node the height of its subtree.

● How do we find an unbalanced node?
○ Just go back up the tree from where we inserted.

● How many rotations might we have to do?
○ Just a single or double rotation on the lowest unbalanced node.
○ A rotation will cause the subtree rooted where the rotation

happens to have the same height it had before insertion
○ log(n) time to traverse to a leaf of the tree
○ log(n) time to find the imbalanced node
○ constant time to do the rotation(s)
○ Theta(log(n)) time for put (the worst case for all interesting +

common AVL methods (get/containsKey/put is logarithmic
time)

CSE 373 23SP 67

6

8

1 3

10

9

72

4

5

11

CSE 373 23SP 68

9

7

4

8

6

5

1 3

2

10

11

CSE 373 23SP 69

Deletion

There is a similar set of rotations that will always let you rebalance an
AVL tree after a deletion

The textbook (or Wikipedia) can tell you more.

We won’t test you on deletions but here’s a high-level summary about
them:
● Deletion is similar to insertion
● It takes Θ(log n) time on a dictionary with n elements
● We won’t ask you to perform a deletion

