
 1CSE 373 23SP

Lecture 09: Hash Collision
Resolutions

CSE 373: Data Structures and
Algorithms

1

CSE 373 23SP 2

Warm Up

● Consider an IntegerDictionary using separate chaining with an internal
capacity of 10. Assume our buckets are implemented using a LinkedList where
we append new key-value pairs to the end.

● Now, suppose we insert the following key-value pairs. What does the dictionary
internally look like?

(1, a) (5,b) (11,a) (7,d) (12,e) (17,f) (1,g) (25,h)

0 1 2 3 4 5 6 7 8 9

(1, a) (5, b)

(11, a) (17, f)

(1, g) (12, e) (7, d)

(25, h)

1671113
https://app.sli.do/event/kBNsqkeFQpoo49
QLguQ6BX

https://app.sli.do/event/kBNsqkeFQpoo49QLguQ6BX
https://app.sli.do/event/kBNsqkeFQpoo49QLguQ6BX

CSE 373 23SP 3

Announcements

● Project 1 due tonight 11:59pm
● Project 2 releases tonight

○ Due Wednesday 4/26 (2 week assignment)

● Exercise 1 turn in closes tomorrow
● Exercise 2 due Monday 4/17

CSE 373 23SP 4

Separate chaining

// some pseudocode

public boolean containsKey(int key) {

int bucketIndex = key % data.length;

loop (data[bucketIndex]) {

 if (currentNode = key) { return true }

}

return false, not in bucket

}

runtime analysis
Are there different possible states for our Hash Map that make this code run
slower/faster, assuming there are already n key-value pairs being stored?

Yes! If we had to do a lot of loop iterations to find the key in the bucket, our code will run slower.

0

1

2

3

4

5

6

7

8

9

1 21

22

44

57

13

17

CSE 373 23SP 5

Hash Table case analysis

0 1 2 3 4 5 6 7 8 9

(0, b) (2, b) (4, b) (5, b) (6, b) (7, b) (8, b)

(10, b)

(30, b)

(40, b)

(5, b)

(6, b)

(7, b)

(8, b)

0 1 2 3 4 5 6 7 8 9

(0, b)

Worst Case: N collisions, get(key) -> O(n)

Best Case: 0 collisions, get(key) -> O(1)

CSE 373 23SP 6

Hash Table Runtimes

Operation Array w/ indices as keys

put(key,value)

best O(1)

In-practice O(1)

worst O(n)

get(key)

best O(1)

In-practice O(1)

worst O(n)

remove(key)

best O(1)

In-practice O(1)

worst O(n)

*in-practice runtimes are assuming an even distribution of the keys inside the
array and following of best-practices to ensure the average chain length is low.

When Hash Table best practices are all followed to reduce the number of collisions
in-practice runtimes remain constant!
> The worst case runtime is so rare we do not consider it when doing general analysis

CSE 373 23SP 7

Reducing Collisions - Resizing

● Data structures like ArrayMap or ArrayList or
ArrayStack must resize when full to make space for more
elements

● Since SeparateChainingHashMap buckets can grow to
any size, you are never forced to resize

What if we used the same array with 10 buckets, but continued
to add data until we had 100 entries?

● What would this do to the runtime of get(key)?
○

CSE 373 23SP 8

Reducing Collisions - Resizing

● Data structures like ArrayMap or ArrayList or ArrayStack must
resize when full to make space for more elements

● Since SeparateChainingHashMap buckets can grow to any size, you
are never forced to resize

What if we used the same array with 10 buckets, but continued to add data
until we had 100 entries?

● What would this do to the runtime of get(key)?
○ assuming even distribution of hashCodes: # of pairs / array.length = O(n/capacity) ∊ O(n)

CSE 373 23SP 9

Reducing Collisions - Resizing

If array.length is fixed as n increases then

get(key) = O(n/array.length) ∊ O(n)

BUT if you resize the array when when n / array.length = 1 then

get(key) = O(n/array.length) ∊ O(1)
● This assumes even distribution of hashCodes across new array
● To redistribute keys you must re-hash keys and find their new bucket based on the

new array.length after each re-size

You must resize and
re-hash for Project 2!

PRO TIP: When you resize, choose a table length that will
help reduce collisions if you multiply the array length by 2
and then choose the nearest prime number

CSE 373 23SP 10

Resizing Don’t forget to re-hash your keys! Project 2

0

1

2

3

4

5

6

7

8

9

(7,blue)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red)

(22,tan) /(22,tan) (7,blue) (77,aqua)

(4,orange)

(1,red) (6,pink)

(8,lilac) (53,puce)

(6,pink)

(77,aqua)

(53,puce)

(8,lilac)

If we just expand
the buckets array,
several values are
hashed in the
wrong place

How to Resize:
1. Expand the buckets array
2. For every element in the old

hash table, re-distribute!
Recompute its position by
taking the mod with the new
length

CSE 373 23SP 11

Lambda + resizing rephrased
To be more precise, the in-practice runtime depends on λ, the current
average chain length.

However, if you resize once you hit that 1:1 threshold, the current λ is
expected to be less than 1 (which is a constant / constant runtime, so
we can simplify to O(1)).

Operation Array w/ indices as keys

put(key,value)

best O(1)

In-practice O(λ)

worst O(n)

get(key)

best O(1)

In-practice O(λ)

worst O(n)

remove(key)

best O(1)

In-practice O(λ)

worst O(n)

0

1

2

3

4

5

6

7

8

9

1 21

22

44

57

13

17

*“In-Practice” Case:
Depends on average number of elements per chain

Load Factor λ
If n is the total number of key-value
pairs,
Let c be the capacity of array,
Load Factor λ = n/c

CSE 373 23SP 12

Questions?

CSE 373 23SP 13

What about non integer keys?
Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

Let’s define another hash function to change stuff like Strings into ints!

Best practices for designing hash functions:

Avoid collisions
● The more collisions, the further we move away from O(1+λ)
● Produce a wide range of indices, and distribute evenly over them

Low computational costs
● Hash function is called every time we want to interact with the data

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

CSE 373 23SP 14

Practice

Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume
our buckets are implemented using a LinkedList. Use the following hash function:

public int hashCode(String input) {
 return input.length() % arr.length;
}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3) (“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”, 6)

CSE 373 23SP 15

hashCode()

Implementation 1: Simple aspect of values
public int hashCode(String input) {
 return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {
 int output = 0;
 for(char c : input) {
 out += (int)c;
 }
 return output;
}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {
 int output = 1;
 for (char c : input) {
 int nextPrime = getNextPrime();
 out *= Math.pow(nextPrime, (int)c);
 }
 return Math.pow(nextPrime, input.length());
}

Pro: super fast
Con: lots of collisions!

Pro: still really fast
Con: some collisions

Pro: few collisions
Con: slow, gigantic integers

Before we % by length, we have to convert the data into an int

CSE 373 23SP 16

Good Hashing
The hash function of a HashMap gets called a LOT:

● When first inserting something into the map
● When checking if a key is already in the map
● When resizing and redistributing all values into new structure

This is why it is so important to have a “good” hash function. A good hash function is:

● Deterministic – same input should generate the same output
● Uniformity – inputs should be spread “evenly” over output range
● Efficiency - it should take a reasonable amount of time

public int hashCode(String s) {
return random.nextInt();

}

public int hashCode(String s) {
 int retVal = 0;
 for (int i = 0; i < s.length(); i++) {
 for (int j = 0; j < s.length(); j++) {
 retVal += helperFun(s, i, j);
 }
 }
 return retVal;
}

public int hashCode(String s) {
 if (s.length() % 2 == 0) {
 return 17;
 } else {
 return 43;
 }
}NOT deterministic

NOT effic
ient

NOT uniform

CSE 373 23SP 17

Practice

Which of the following two hashCode functions for a String will
produce more collisions on average?

public int hashCode1() {
 Iterator<Character> iterator =
this.iterator();
 int result = 13;
 int i = 0;
 while (iterator.hasNext()) {
 result += iterator.next().hashCode() *
37^i;
 i++;
 }
 return result % 5;
}

public int hashCode2() {
 Iterator<Character> iterator = this.iterator();
 int result = 0;
 int i = 0;
 while (iterator.hasNext()) {
 result += iterator.next().hashCode();
 i++;
 }
 return i;
}

hashCode1 will produce more collisions because it limits the range of possible
values in the return statement. If that %5 was removed than hashCode2 would
produce more collisions

CSE 373 23SP 18

Java’s hashCode function

All Java Objects must include a hashCode function:

public int hashCode();

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by
HashMap.

The general contract of hashCode is:
- Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode

method must consistently return the same integer, provided no information used in equals comparisons on the object is
modified. This integer need not remain consistent from one execution of an application to another execution of the same
application.

- If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the
two objects must produce the same integer result.

- It is not required that if two objects are unequal according to the equals(java.lang.Object) method, then calling the
hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be
aware that producing distinct integer results for unequal objects may improve the performance of hash tables.

From official Oracle Java documentation:

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

CSE 373 23SP 19

Java and Hash Functions

● Object class includes default functionality:
○ int equals(Object other)
○ int hashCode()

● If you want to implement your own hashCode you should:
○ Override BOTH hashCode() and equals()

● If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true
○ This is how Java knows to replace the value associated with the key or to

add a new key to the bucket

● That requirement is part of the Object interface
○ Other people’s code will assume you’ve followed this rule.

● Java’s HashMap (and HashSet) will assume you follow these rules and
conventions for your custom objects if you want to use your custom objects
as keys.

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

CSE 373 23SP 20

Questions?

CSE 373 23SP 21

Linear Probing
Quadratic Probing
Double Hashing
Summary

CSE 373 23SP 22

Handling Collisions

Solution 2: Open Addressing

Resolves collisions by choosing a different location to store a value if natural choice is
already full.

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot.

int findFinalLocation(Key s) {
 int naturalHash = this.hashCode(s);
 int index = naturalHash % array.length;

 while (index in use) {

 i++;

 index = (naturalHash + i) % array.length;
 }
 return index;
}

CSE 373 23SP 23

Linear Probing

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size
and linear probing to resolve collisions
1, 5, 11, 7, 12, 17, 6, 25

1 511 712 176 25

CSE 373 23SP 24

Primary Clustering

When probing causes long chains of
occupied slots within a hash table

Linear Probing

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size
and linear probing to resolve collisions
38, 19, 8, 109, 10

38 198 109 10

Problem:
● Linear probing causes clustering
● Clustering causes more looping when probing

CSE 373 23SP 25

Runtime

When is runtime good?

When we hit an empty slot
● (or an empty slot is a very short distance away)

When is runtime bad?

When we hit a “cluster”

Maximum Load Factor?

λ at most 1.0

When do we resize the array?

λ ≈ ½ is a good rule of thumb

CSE 373 23SP 26

Can we do better?
Clusters are caused by picking new space near the natural index

Solution 2: Open Addressing (still)

Type 2: Quadratic Probing

Instead of checking i past the original location, check i² from the
original location

int findFinalLocation(Key s)
int naturalHash = this.hashCode(s);
int index = naturalHash % array.length;
while (index in use) {

i++;
index = (naturalHash + i*i) % array.length;

}
return index;

CSE 373 23SP 27

Linear Probing
Quadratic Probing
Double Hashing
Summary

CSE 373 23SP 28

Quadratic Probing

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

891849

Insert the following values into the Hash Table using a hashFunction of % table size
and quadratic probing to resolve collisions
89, 18, 49, 58, 79, 27

58 79

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!
Can still get clusters

27

Now try to insert 9.

Uh-oh(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

CSE 373 23SP 29

Quadratic Probing

There were empty spots. What Gives?

Quadratic probing is not guaranteed to check every possible spot
in the hash table

The following is true:

Notice we have to assume p is prime to get that guarantee

If the table size is a prime number p, then the first p/2 probes check distinct indices.

CSE 373 23SP 30

Secondary Clustering

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
19, 39, 29, 9

39 29 199

Secondary Clustering

When using quadratic probing, you
sometimes need to probe the same
sequence of table cells, not necessarily
next to one another

CSE 373 23SP 31

Probing

h(k) = the natural hash
h’(k, i) = resulting hash after probing
i = iteration of the probe
T = table size

Linear Probing:

h’(k, i) = (h(k) + i) % T

Quadratic Probing

h’(k, i) = (h(k) + i2) % T

CSE 373 23SP 32

Questions?
Topics Covered:
● Writing good hash functions
● Open addressing to resolve collisions:

○ Linear probing
○ Quadratic probing

CSE 373 23SP 33

Linear Probing
Quadratic Probing
Double Hashing
Summary

CSE 373 23SP 34

Double Hashing

Probing causes us to check the same indices over and over- can we
check different ones instead?

Use a second hash function!

h’(k, i) = (h(k) + i * g(k)) % T

int findFinalLocation(Key s)
 int naturalHash = this.getHash(s);
 int index = natrualHash % TableSize;

while (index in use) {
i++;

 index = (naturalHash + i*jumpHash(s)) % TableSize;
}
return index;

<- Most effective if g(k) returns value relatively prime to table size

CSE 373 23SP 35

Second Hash Function

Effective if g(k) returns a value that is relatively prime to table size
● If T is a power of 2, make g(k) return an odd integer
● If T is a prime, make g(k) return anything except a multiple of the

TableSize

CSE 373 23SP 36

Resizing: Open Addressing

How do we resize? Same as separate chaining
● Remake the table
● Evaluate the hash function over again
● Re-insert

When to resize?
● Depending on our load factor λ AND our probing strategy

○ If λ = 1, put with a new key fails for linear probing
○ If λ ﹥1/2, put with a new key might fail for quadratic probing, even with a prime

tableSize
■ And it might fail earlier with a non-prime size

○ If λ = 1, put with a new key fails for double hashing
■ And it might fail earlier if the second hash isn’t relatively prime with the tableSize

CSE 373 23SP 37

Running Times

What are the running times for:

insert
Best: O(1)
Worst: O(n) (we have to make sure the key isn’t already in the bucket)

find
Best: O(1)
Worst: O(n)

delete
Best: O(1)
Worst: O(n)

CSE 373 23SP 38

In-Practice

For open addressing:
We’ll assume you’ve set λ appropriately, and that all the operations are Θ(1).

The actual dependence on λ is complicated - see the textbook (or ask me in office hours)
And the explanations are well-beyond the scope of this course

CSE 373 23SP 39

Linear Probing
Quadratic Probing
Double Hashing
Summary

CSE 373 23SP 40

Summary

1. Pick a hash function to:
● Avoid collisions
● Uniformly distribute data
● Reduce hash computational costs

2. Pick a collision strategy
● Chaining
● LinkedList
● AVL Tree
● Probing
● Linear
● Quadratic
● Double Hashing

No clustering
Potentially more “compact” (λ can be higher)

Managing clustering can be tricky
Less compact (keep λ < ½)
Array lookups tend to be a constant factor faster than traversing
pointers

CSE 373 23SP 41

Summary

Separate Chaining
● Easy to implement
● Running times O(1+λ) in practice

Open Addressing
● Uses less memory (usually)
● Various schemes:

○ Linear Probing - easiest, but lots of clusters
○ Quadratic Probing - middle ground, but need to be more careful about λ
○ Double Hashing - need a whole new hash function, but low chance of

clustering
Which one you use depends on your application and what you’re worried
about

CSE 373 23SP 42

Java’s HashMap Implementation

● default array capacity is 16
○ Iteration over collection views requires time proportional to the

"capacity" of the HashMap instance (the number of buckets) plus its size
(the number of key-value mappings). Thus, it's very important not to set
the initial capacity too high - Javadocs

● resizes at load factor 0.75
○ As a general rule, the default load factor (.75) offers a good tradeoff

between time and space costs. Higher values decrease the space
overhead but increase the lookup cost - Javadocs

● uses separate-chaining collision resolution
○ Initially uses LinkedLists as the buckets
○ After 8 collisions across the table at the next resize the buckets will be

created as balanced trees to reduce runtime of possible worst case
scenario - Javarevisited

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://javarevisited.blogspot.com/2016/01/how-does-java-hashmap-or-linkedhahsmap-handles.html#axzz7yfttgcFu

CSE 373 23SP 43

Fingerprinting
git hashes (“identification”)
● That crazy number that is attached to each of your

commits
● SHA-1 hash incorporates the contents of your change, the

name of the files and the lines of the files you changes
Ad Tracking
● Track who has seen an ad if they saw it on a different

device (if they saw it on their phone don’t want to show it
on their laptop)

● https://panopticlick.eff.org will show you what is being
hashed about you

YouTube Content ID
● Do two files contain the same thing? Copyright

infringement
● Change the files a bit!

Other Hashing Applications

We use it for hash tables but there are lots of uses! Hashing is a really good way of taking
arbitrary data and creating a succinct and unique summary of data.
Caching
● You’ve downloaded a large video file, You want to

know if a new version is available, Rather than
re-downloading the entire file, compare your file’s
hash value with the server's hash value.

File Verification / Error Checking
● Compare the hash of a file instead of the file itself
● Find similar substrings in a large collection of

strings – detecting plagiarism
Cryptography
Hashing also ”hides” the data by translating it, this can
be used for security
● For password verification: Storing passwords in

plaintext is insecure. So your passwords are
stored as a hash

● Digital signatures

https://panopticlick.eff.org/

CSE 373 23SP 44

Questions?

CSE 373 23SP 45

That’s all!

