
 1CSE 373 23SP

Lecture 5: Big O and
Case Analysis

CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

public void mystery2(ArrayList<String> list) {

 for (int i = 0; i < list.size(); i++) {

 for (int j = 0; j < list.size(); j++) {

 System.out.println(list.get(0));

 }

 }

}

Construct a mathematical function modeling the runtime for
the following functions

Approach
-> start with basic operations, work inside out for control
structures
- Each basic operation = +1
- Conditionals = test operations + appropriate branch
- Loop = iterations * loop body

*n+2 *n f(n) = 2n2

Slido Event #3113134
https://app.sli.do/event/eZS
ybDnHLRnuNXw3WN2zGj

https://app.sli.do/event/eZSybDnHLRnuNXw3WN2zGj
https://app.sli.do/event/eZSybDnHLRnuNXw3WN2zGj

CSE 373 23SP 3

Announcements

● Project 0 – 143 Review Project Due Tonight 11:59pm PST

● Project 1 - Deques releases tonight
○ Due Wednesday April 12th

● Exercise 0 out - Due Monday 4/10
○ Individual submissions

CSE 373 23SP 4

P1 Deques

CSE 373 23SP 5

P1: Deques

● Deque ADT: a double-ended queue
○ Add/remove from both ends, get in middle

● This project builds on ADTs vs. Data
Structure Implementations, Queues, and
a little bit of Asymptotic Analysis
○ Practice the techniques and analysis covered in

LEC 02 & LEC 03!

● 3 components:
○ Debug ArrayDeque implementation
○ Implement LinkedDeque
○ Run experiments

ArrayDeque
LinkedDeque

DEQUEUE ADT

State

Collection of ordered items
Count of items

Behavior
addFirst(item) add to front
addLast(item) add to end
removeFirst() remove from front
removeLast() remove from end
size() count of items
isEmpty() count is 0?
get(index) get 0-indexed
element

CSE 373 23SP 6

P1: Sentinel Nodes

Reduce code complexity & bugs

Tradeoff: a tiny amount of extra
storage space for more reliable,
easier-to-develop code

Tired of running into these?
Find yourself writing case after case
in your linked node code?

Client View:

Implementation:

[3, 9]Introducing

Sentinel Nodes

CSE 373 23SP 7

P1: Gradescope & Testing
● From this project onward, we’ll have some Gradescope-only tests

○ Run & give feedback when you submit, but only give a general name

● The practice of reasoning about your code and writing your own tests is
crucial
○ Use Gradescope tests as a double-check that your tests are thorough
○ To debug Gradescope failures, your first step should be writing your own test case

● You can submit as many times as you want on Gradescope (we’ll only
grade the last active submission)
○ If you’re submitting a lot (more than ~6 times/hr) it will ask you to wait a bit
○ Intention is not to get in your way: to give server a break, and guess/check is not usually an

effective way to learn the concepts in these assignments

1. Write
Implementation

2. Think about edge
cases, Write your own

tests
3. Run your own tests

4. Run Gradescope
tests as a

double-check

CSE 373 23SP 8

P1: Working with a Partner

● P1 Instructions talk about collaborating with your partner
○ Adding each other to your GitLab repos

● Recommendations for partner work:
○ Pair programming! Talk through and write the code together

■ Two heads are better than one, especially when spotting edge cases ☺
○ Meet in real-time! Consider screen-sharing via Zoom
○ Be kind! Collaborating in our online quarter can be especially difficult, so

please be patient and understanding – partner projects are usually an
awesome experience if we’re all respectful

● We expect you to understand the full projects, not just half
○ Please don’t just split the projects in half and only do part
○ Please don’t come to OH and say “my partner wrote this code, I don’t

understand it, can you help me debug it?”

CSE 373 23SP 9

Questions?

CSE 373 23SP 10

Big O

CSE 373 23SP 11

Definition: Big-O

We wanted to find an upper bound on our
algorithm’s running time, but:
● We don’t want to care about constant factors
● We only care about what happens as n gets

larger

We also say that g(n) “dominates” f(n)

Big-O

f(n) is O(g(n)) if there exist positive
constants c, n₀, such that for all n ≥ n₀,

f(n) ≤ c · g(n)

CSE 373 23SP 12

Applying Big O Definition

 Show that is

Apply definition term by term

Add up all your truths

Big-O

f(n) is O(g(n)) if there exist
positive constants c, n₀, such that

for all n ≥ n₀, f(n) ≤ c · g(n)

CSE 373 23SP 13

Exercise: Proving Big O

Big-O

f(n) is O(g(n)) if there exist
positive constants c, n₀, such that

for all n ≥ n₀, f(n) ≤ c · g(n)

CSE 373 23SP 14

Writing Big-O Proofs

CSE 373 23SP 15

Big-O as an upper bound

Big-O is just an upper bound. It doesn’t have to be a good upper bound

If we want the best upper bound, we’ll ask you for a simplified, tight big-O bound.
O(n²) is the tight bound for this example.

It is (almost always) technically correct to say your code runs in time O(n!).
DO NOT TRY TO PULL THIS TRICK IN AN INTERVIEW (or exam)!

CSE 373 23SP 16

Big-O is an upper-bound, not a fit

CSE 373 23SP 17

If we want the most-informative upper bound, we’ll
ask you for a simplified, tight big-O bound.

O(n^2) is the tight bound for the function f(n) =
10n2+15n. See the graph below – the tight big-O
bound is the smallest upper bound within the
definition of big-O.

If you zoom out a bunch, the your tight bound and
your function will be overlapping compared to
other complexity classes.

Big-O is an upper-bound, not a fit

What do we want to look for on a plot to
determine if one function is in the big-O of
the other?

You can sanity check that your g(n) function
(the dominating one) overtakes or is equal to
your f(n) function after some point and
continues that greater-than-or-equal-to
trend towards infinity

n3

n5

n4

10n2 + 15n

n2

10n2 + 15n

CSE 373 23SP 18

Questions?

CSE 373 23SP 19

Uncharted Waters: a different type of code model

boolean isPrime(int n){
int toTest = 2;
while(toTest < Math.sqrt(n)){

 if(n % toTest == 0) {
 return false;
 } else {
 toTest++;
 }

}
return true;

}

Find a model f(n) for the running time of this code on input n. What’s the Big-O?

*n

+1

+2

+1

+1

+2

+2

+4 … sometimes?

^ we always pick the larger number to represent the
slowest possible interpretation for Big O analysis

so even with the “sometimes n” loop we pick n to get a
code model of:

f(n) = 6n+2

CSE 373 23SP 20

Prime Checking Runtime

This is why we we define Big-O as the upper bound!

Is the running time of the
code O(1) or O(n)?

More than half of the
time we need 3 or fewer
iterations. Is it O(1)?

But there’s still always
another number where
the conde takes n
iterations. So O(n)?

CSE 373 23SP 21

 Big-O

f(n) is O(g(n)) if there exist
positive constants c, n₀, such that

for all n ≥ n₀, f(n) ≤ c · g(n)

Is the running time O(n)?
Can you find constants c and n₀?

Is the running time O(1)?
Can you find constants c and n₀?

How about c = 1 and n₀ = 5,
f(n) = smallest divisor of n ≤ 1·n for n ≥ 5

No! Choose your value of c. I can find a prime
number k bigger than c.
And f(k) = k ﹥ c · 1 so the definition isn’t met

It’s O(n) but not O(1)

CSE 373 23SP 22

Big-O isn’t everything

 Our prime finding code is O(n). But so is, for example, printing all the elements of a list.

Your experience running these two pieces of code is going to be very different.
It’s disappointing that the O() are the same – that’s not very precise.
Could we have some way of pointing out the list code always takes AT LEAST n operations?

CSE 373 23SP 23

 The formal definition of Big-Omega is
the flipped version of Big-Oh.

When we make Big-Oh statements
about a function and say f(n) is O(g(n))
we’re saying that f(n) grows at most as
fast as g(n).

But with Big-Omega statements like f(n)
is Ω(g(n)), we’re saying that f(n) will
grows at least as fast as g(n).

Visually: what is the lower limit of this function?
What is bounded on the bottom by?

Big-Omega

f(n) is Ω(g(n)) if there exist
positive constants c, n₀, such that

for all n ≥ n₀, f(n) ≥ c · g(n)

CSE 373 23SP 24

Big-Omega definition Plots

2n3

n2

n

1

n3

CSE 373 23SP 25

Note: this right graph’s tight O bound is O(n) and its tight Omega bound is Omega(n). This is what most
of the functions we’ll deal with will look like, but there exists some code that would produce runtime
functions like on the left.

f(n) = nprime runtime function

CSE 373 23SP 26

Big-Theta

Big Theta is “equal to”
● My code takes “exactly”* this long to run

*Except for constant factors and lower order terms

f(n) = n

To define a big-Theta, you expect
the tight big-Oh and tight
big-Omega bounds to be touching
on the graph (meaning they’re the
same complexity class)

Big-Theta

f(n) is Θ(g(n)) if
f(n) is O(g(n)) and f(n) is Ω(g(n)).
In other words, there exist positive
constants c1, c2, n₀ such that for all n ≥ n₀
c₁ · g(n) ≤ f(n) ≤ c₂ · g(n)

CSE 373 23SP 27

Big-Theta

If the upper bound (BigO) and lower bound (Big Omega) are in
different complexity classes, there is no fit so…

prime runtime function

theta

CSE 373 23SP 28

O, and Omega, and Theta [oh my?]

Big-O is an upper bound
● My code takes at most this long to run

Big-Theta

f(n) is Θ(g(n)) if
f(n) is O(g(n)) and f(n) is Ω(g(n)).
In other words, there exist positive constants c1,
c2, n₀ such that for all n ≥ n₀
c₁ · g(n) ≤ f(n) ≤ c₂ · g(n)

Big-Omega

f(n) is Ω(g(n)) if there exist positive constants c,
n₀, such that for all n ≥ n₀, f(n) ≥ c · g(n)

Big-O

f(n) is O(g(n)) if there exist positive constants c,
n₀, such that for all n ≥ n₀, f(n) ≤ c · g(n)

Big-Omega is a lower bound
● My code takes at least this long to

run

Big Theta is “equal to”
● My code takes “exactly”* this long to run
● *Except for constant factors and lower order

terms

CSE 373 23SP 29

Examples

 4n2 ∈ Ω(1)
 true
 4n2 ∈ Ω(n)
 true
 4n2 ∈ Ω(n2)
 true
 4n2 ∈ Ω(n3)
 false
 4n2 ∈ Ω(n4)
 false

 4n2 ∈ O(1)

 false

 4n2 ∈ O(n)

 false

 4n2 ∈ O(n2)

 true

 4n2 ∈ O(n3)

 true

 4n2 ∈ O(n4)

 true

Big-Theta

f(n) is Θ(g(n)) if
f(n) is O(g(n)) and f(n) is Ω(g(n)).
In other words, there exist positive constants c1,
c2, n₀ such that for all n ≥ n₀
c₁ · g(n) ≤ f(n) ≤ c₂ · g(n)

Big-Omega

f(n) is Ω(g(n)) if there exist positive constants c,
n₀, such that for all n ≥ n₀, f(n) ≥ c · g(n)

Big-O

f(n) is O(g(n)) if there exist positive constants c,
n₀, such that for all n ≥ n₀, f(n) ≤ c · g(n)

CSE 373 23SP 30

Simplified, tight big-O

CSE 373 23SP 31

Questions?

CSE 373 23SP 32

Our Upgraded Tool: Asymptotic Analysis

TIGHT

BIG-O

RUNTIME

FUNCTION
Asymptotic
Analysis

2 O(n2)

TIGHT

BIG-OMEGA

BIG-THETA Θ(n2)

f(n) = 10n2 + 13n + 2

We’ve upgraded our Asymptotic Analysis tool to convey more useful information! Having 3 different types of bounds
means we can still characterize the function in simple terms, but describe it more thoroughly than just Big-Oh.

CSE 373 SP 22 - CHAMPION

Ω(n2)

CSE 373 23SP 33

Our Upgraded Tool: Asymptotic Analysis
TIGHT

BIG-OH

RUNTIME

FUNCTION
Asymptotic
Analysis

2 O(n)

TIGHT

BIG-OMEGA

BIG-THETA
Does not exist
for this function

isPrime()
Big-Theta doesn’t always exist for every function! But the information that
Big-Theta doesn’t exist can itself be a useful characterization of the function.

CSE 373 SP 22 - CHAMPION

Ω(1)

CSE 373 23SP 34

Algorithmic Analysis Roadmap

CODE Code Modeling
RUNTIME

FUNCTION

1

for (i = 0; i < n; i++) {
 a[i] = 1;
 b[i] = 2;
}

f(n) = 2n

TIGHT

BIG-OH

Asymptotic
Analysis

2

TIGHT

BIG-OMEGA

BIG-THETA

O(n)

Θ(n)

We just finished building this tool to
characterize a function in terms of some
useful bounds!

Now, let’s look at this tool in more
depth. How exactly are we coming
up with that function?

CSE 373 SP 22 - CHAMPION

Ω(n)

CSE 373 23SP 35

Case Analysis

CSE 373 SP 18 - KASEY CHAMPION 35

CSE 373 23SP 36

Case Study: Linear Search

int linearSearch(int[] arr, int toFind) {
 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == toFind)

return i;
 }
 return -1;
}

2 3 9 4 5arr

toFind 2

2 3 9 4 5

toFind 8

i

arr

i

i i i i

CSE 373 SP 22 - CHAMPION

CSE 373 23SP 37

Best Case Worst Case
On Lucky Earth On Unlucky Earth (where it’s 2020 every year)

2 3 9 4 5arr

toFind 2

i

2 3 9 4 5arr

toFind 8

i

f(n) = 3n + 1f(n) = 2

O(1) Θ(1) O(n) Θ(n)
After asymptotic analysis:After asymptotic analysis:

CSE 373 23SP 38

Case Analysis

Case: a description of inputs/state for an algorithm that is specific
enough to build a code model (runtime function) whose only
parameter is the input size
● Case Analysis is our tool for reasoning about all variation other than n!
● Occurs during the code 🡪 function step instead of function 🡪 O/Ω/Θ step!

● (Best Case: fastest/Worst Case: slowest) that
our code could finish on input of size n.

● Importantly, any position of toFind in arr could
be its own case!
○ For this simple example, probably don’t care

(they all still have bound O(n))
○ But intermediate cases will be important later

Worst

Best

Other Cases

CSE 373 SP 22 - CHAMPION

CSE 373 23SP 39

Caution: Common Misunderstanding

Best/Worst case is based on all variation other than value of n

“The best case is when n=1, worst is when n=infinity”

“The best case is when front is null”

“The best case is when overallRoot is null”

Correct

“The best case is when the node I’m looking for is at front, the
worst is when it’s not in the list”

“The best case is when the BST is perfectly balanced, the worst
is when it’s a single line of nodes”

Incorrect

CSE 373 23SP 40

Other cases

CSE 373 19 SU - ROBBIE WEBER

CSE 373 23SP 41

How to do case analysis

1. Look at the code, understand how thing could change
depending on the input.

● How can you exit loops early?
● Can you return (exit the method) early?
● Are some if/else branches much slower than others?

2. Figure out what input values can cause you to hit the
(best/worst) parts of the code.

- not to be confused with number of inputs

3. Now do the analysis like normal!

CSE 373 19 SU - ROBBIE WEBER

CSE 373 23SP 42

Algorithmic Analysis Roadmap

CODE

BEST CASE

FUNCTION

for (i = 0; i < n; i++) {
 if (arr[i] == toFind) {
 return i;
 }
}
return -1;

f(n) = 2

TIGHT

BIG-OH2

TIGHT

BIG-OMEGA

BIG-THETA

O(n)

Θ(n)

1

Asymptotic
Analysis

WORST CASE

FUNCTION

OTHER CASE

FUNCTION

Case
Analysis

f(n) = 3n+1

Ω(n)

CSE 373 23SP 43

Review Algorithmic Analysis Roadmap

CODE

BEST CASE

FUNCTION

for (i = 0; i < n; i++) {
 if (arr[i] == toFind) {
 return i;
 }
}
return -1;

f(n) = 2

TIGHT

BIG-OH2

TIGHT

BIG-OMEGA

BIG-THETA

O(1)

Θ(1)
1 Asymptotic

Analysis

WORST CASE

FUNCTION

OTHER CASE

FUNCTION

Case
Analysis

f(n) = 3n+1

Ω(1)

CSE 373 23SP 44

When to do Case Analysis?
 Imagine a 3-dimensional plot
-Which case we’re considering is one dimension
-Choosing a case lets us take a “slice” of the other dimensions: n and f(n)
-We do asymptotic analysis on each slice in step 2

f(n) n

toFind position

At front
(Best Case)

Not present
(Worst Case)

