
 1CSE 373 23SP

Lecture 4: Intro to Runtime
Analysis

CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Warm Up

Situation: You are writing a program to schedule jobs sent to a laser printer. The
laser printer should process these jobs in the order in which the requests were
received. There are busy and slow times for requests that can have large
differences in the volume of jobs sent to the printer. Which ADT and what
implementation would you use to store the jobs sent to the printer?

ADT options:
● List
● Stack
● Queue

Implementation options:
● array
● linked nodes

Kasey’s Answer
LinkedQueue
This will maintain the original order of the print jobs, but
allow you to easily cancel jobs stuck in the middle of the
queue. This will also keep the space used by the queue at
the minimum required levels despite the fact the queue will
have very different lengths at different times.

Discuss with your neighbors: For the following scenario select
the appropriate ADT and implementation and explain why they
are optimal for this situation.

Slido Event #1190355
https://app.sli.do/event/6kJ
CJNUzLZFsfdCCUa7zXZ

https://app.sli.do/event/6kJCJNUzLZFsfdCCUa7zXZ
https://app.sli.do/event/6kJCJNUzLZFsfdCCUa7zXZ

CSE 373 23SP 3

Questions?

CSE 373 23SP 4

Announcements

● Office hours start this week
● HW 0 – 143 Review Project

○ Group submissions
○ Due Wednesday April 6th at 11:59pm

● Exercise 0 Releasing today
○ Individual submissions
○ Due next Monday at 11:59pm

CSE 373 23SP 5

Big O

CSE 373 23SP 6

Review: Complexity Class

complexity class: A category of algorithm efficiency based on the
algorithm's relationship to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log
2
 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log
2
 N) slightly more than

doubles
Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies
drastically

Fibonacci with
recursion

bigocheatsheet.com

http://bigocheatsheet.com

CSE 373 23SP 7

Code to Big-O

123/143 general patterns:
O(1) constant is no loops
O(n) is one loop
O(n2) is nested loops

CODE BIG-O

for (i = 0; i < n; i++) {
 a[i] = 1;
 b[i] = 2;
}

O(n)?
373:
We need a way to
definitively determine Big O
for all code

CSE 373 23SP 8

Motivation: Why Big-O?

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Decisive
Produce a clear comparison indicating
which code takes “longer”

1. 2.

Goals of Big-O/Algorithmic Analysis:

CSE 373 23SP 9

Why not time code?
Actual time to completion can
vary depending on hardware,
state of computer and many
other factors.

These graphs are of times to
run add and contains on
structures of various sizes of
N and you can see
inconsistencies in individual
runs which can make
determining the overall
relationship between the
code and runtime less clear.

You can find the code to run
these tests on your own
machine on the course
website!

CSE 373 23SP 10

Meet Algorithmic Analysis

CODE
COMPLEXITY

CLASS
Code Modeling

RUNTIME

FUNCTION Asymptotic Analysis

Algorithmic Analysis: The overall process of characterizing code with a
complexity class, consisting of:
○ Code Modeling: Code 🡪 Function describing code’s runtime
○ Asymptotic Analysis: Function 🡪 Complexity class describing asymptotic behavior

1 2

for (i = 0; i < n; i++) {
 a[i] = 1;
 b[i] = 2;
}

O(n)f(n) = 2n

CSE 373 23SP 11

Code Modeling

Code Modeling – the process of mathematically representing how
many operations a piece of code will run in relation to the input size n.
○ Convert from code to a function representing its runtime

CODE
RUNTIME

FUNCTION

1

Code Modeling

for (i = 0; i < n; i++) {
 a[i] = 1;
 b[i] = 2;
}

Example:
- One array element update = “1” runtime count
- Loop that runs “n” times = “n” runtime count
- Loop N times(2 runtime counts inside loop)

= 2N

CSE 373 23SP 12

What Counts?
We don’t know exact runtime of every operation, but for now let’s try
simplifying assumption: all basic operations take the same time

● Basics count as “1”:
○ +, -, /, *, %, ==
○ Assignment
○ Returning
○ Variable/array access

● Function Calls
○ Total runtime in body
○ Remember: new calls a function

(constructor)
● Conditionals

○ Test + time for the followed branch
■ Learn how to reason about branch later

● Loops
○ Number of iterations * total runtime in

condition and body
○ For loop header operations don’t count, but

while loop headers do

CSE 373 23SP 13

Code Modeling Example 1

public void method1(int n) {
 int sum = 0;
 int i = 0;
 while (i < n) {
 sum = sum + (i * 3);
 i = i + 1;
 }
 return sum;
}

+1

+1

+1

+3

+2

+1

+6 *n

Loop runs n times

f(n) = 6n + 3

CSE 373 23SP 14

Code Modeling Example 2
public void method2(int n) {
 int sum = 0;
 int i = 0;
 while (i < n) {
 int j = 0;
 while (j < n) {
 if (j % 2 == 0) {
 // do nothing
 }
 sum = sum + (i * 3) + j;
 j = j + 1;
 }
 i = i + 1;
 } return sum;
}

+1

+1

+1

+2

+1

+9 *n

This inner loop
runs n times

f(n) = (9n+4)n + 3

+1

+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times

Practice time!

CSE 373 23SP 15

Where are we?

● We just turned a piece of code into a function!
○ We’ll look at better alternatives for code modeling later

● Now to focus on step 2, asymptotic analysis

for (i = 0; i < n; i++) {
 a[i] = 1;
 b[i] = 2;
}

O(n)f(n) = 2n

CODE
COMPLEXITY

CLASS
Code Modeling

RUNTIME

FUNCTION Asymptotic Analysis

1 2

CSE 373 23SP 16

Finding a Big O

= 9n2 + 3n + 3
≈ 9n2

≈ n2

f(n) is O(n2)

f(n) = (9n+3)n + 3

COMPLEXITY
CLASS

RUNTIME

FUNCTION Asymptotic Analysis

2

We have an expression for f(n). How do
we get the O() that we’ve been talking
about?
1. Find the “dominating term” and delete all others

a. The “dominating term” is the one that is the
largest as n gets bigger. in this class, often the
largest power of n.

2. Remove and constant factors

CSE 373 23SP 17

Finding a Big O

= 6n + 3
≈ 6n
≈ n

f(n) is O(n)

f(n) = 6n + 3

We have an expression for f(n). How do
we get the O() that we’ve been talking
about?
1. Find the “dominating term” and delete all others

a. The “dominating term” is the one that is the
largest as n gets bigger. In this class, often the
largest power of n.

2. Remove and constant factors

Practice time!

CSE 373 23SP 18

Dominating terms have the largest influence on the behavior of
f(n) as they are the largest, and “dominate” the smaller terms

f(n) = n + 10 g(n) = n^2 + n + 10

What is a “dominating term”?

Asymptotic Analysis: Analysis of function behavior as its input
approaches infinity

T(n)

n

T(n)

n

CSE 373 23SP 19

What is a “dominating term”?
Practice time!

What is the dominating term?
1. n2 + n
2. n + 1000
3. n100+ n50+ n2 + 5
4. n2 + 2n

5. 3n + 4n

n2

n
n100

2n
4n

hint: ask yourself “which term is going to be the largest the bigger and bigger n is?”

CSE 373 23SP 20

f(n) = n g(n) = n + 10

Can we really throw away all that info?

Asymptotic Analysis: Analysis of function behavior as its input
approaches infinity

T(n)

n

10

0 5 10

T(n)

n

200

0 100 200

Let’s look at linear functions and think about the effect of constants

At the scale of infinity, f(n) and
g(n) have identical behavior,
aka the constant doesn’t
change anything and can be
ignored

Applies for all functions

CSE 373 23SP 21

f(n) = n g(n) = 2n

Can we really throw away all that info?

Asymptotic Analysis: Analysis of function behavior as its input
approaches infinity

T(n)

 small scale
n

T(n)

 much larger scale
n

Let’s look at linear functions and think about the effect of coefficients

At the scale of infinity, f(n) and
g(n) have identical behavior,
aka the coefficient doesn’t
change anything and can be
ignored

Applies for all functions

CSE 373 23SP 22

Can we really throw away all that info?

 Big-Oh is like the “significant digits” of computer science

Asymptotic Analysis: Analysis of function behavior as its input
approaches infinity
● We only care about what happens when n approaches infinity
● For small inputs, doesn’t really matter: all code is “fast enough”
● Since we’re dealing with infinity, constants and lower-order terms don’t

meaningfully add to the final result. The highest-order term is what drives
growth!

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Decisive
Produce a clear comparison indicating
which code takes “longer”

Remember our goals:

1. 2.

CSE 373 23SP 23

Function growth

…but since both are linear
eventually look similar at large
input sizes

whereas h(n) has a distinctly
different growth rate

The growth rate for f(n) and
g(n) looks very different for
small numbers of input

But for very small input values
h(n) actually has a slower growth
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model

CSE 373 23SP 24

Definition: Big-O

We wanted to find an upper bound on our
algorithm’s running time, but:
● We don’t want to care about constant factors
● We only care about what happens as n gets

larger

We also say that g(n) “dominates” f(n)

Big-O

f(n) is O(g(n)) if there exist positive
constants c, n₀, such that for all n ≥ n₀, f(n)
≤ c · g(n)

CSE 373 23SP 25

n

f(n)

EX0: What’s the Big O?

O(logn)
This graph
appears to
follow the
pattern of

logarithmic
growth

O(n2)
This graph
appears to follow
the pattern of
quadratic growth

O(1)
Though this graph

oscillates, the
upper and lower

bounds are
constant

O(n)
Though this graph
has different
upper and lower
bounds, they are
both linear

O(logn)
Though this graph
has two different
growth rates, we

only count the one
that tends to

infinity

CSE 373 23SP 26

Questions?

CSE 373 23SP 27

That’s all!

