
 1CSE 373 23SP

Lecture 3: ADT
Implementation

CSE 373: Data Structures and
Algorithms

Slido Event #2048464
https://app.sli.do/event/hnnj
zEubx73ASDfQCzhPXw

https://app.sli.do/event/hnnjzEubx73ASDfQCzhPXw
https://app.sli.do/event/hnnjzEubx73ASDfQCzhPXw

CSE 373 23SP 2

Warm Up

ArrayList

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow
data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

ArrayList
uses an Array as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

list free space

LinkedList

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
update next of last
node
insert create new
node, loop until
index, update next
fields
delete loop until
index, skip node
size return size

state

behavior

Node front
size

LinkedList
uses nodes as underlying storage

88.6 26.1 94.4

Q: Would you use a
LinkedList or
ArrayList
implementation for
each of these
scenarios?

Situation #1: Choose a data
structure that implements the
List ADT that will be used to store
a list of songs in a playlist.

Situation #2: Choose a data
structure that implements the
List ADT that will be used to store
the history of a bank customer’s
transactions.

Situation #3: Choose a data
structure that implements the
List ADT that will be used to store
the order of students waiting to
speak to a TA at a tutoring center

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

CSE 373 23SP 3

Warm Up

Situation: Write a data structure that implements the List ADT
that will be used to store a list of songs in a playlist.

Features to consider:
- add or remove songs from list
- change song order
- shuffle play

Why ArrayList?
- optimized element access makes shuffle

more efficient
- accessing next element faster in

contiguous memory

Why LinkedList?
- easier to reorder songs
- memory right sized for changes in size of

playlist, shrinks if songs are removed

Q: Would you use a LinkedList or ArrayList
implementation for this scenario?
Discuss with those around you!

Slido Event #2048464
https://app.sli.do/event/hnnj
zEubx73ASDfQCzhPXw

https://app.sli.do/event/hnnjzEubx73ASDfQCzhPXw
https://app.sli.do/event/hnnjzEubx73ASDfQCzhPXw

CSE 373 23SP 4

Agenda

Design Decisions Review
Stacks
Queues
Dictionaries
Questions

CSE 373 23SP 5

Announcements

 HW 0 – 143 Review Project
- Live on website
- Due Wednesday

 Monday - Exercise 1 to be released

CSE 373 23SP 6

Design Decisions Review
Stacks
Queues
Dictionaries
Questions

CSE 373 23SP 7

Design Decisions

For every ADT there are lots of different ways to implement them

Based on your situation you should consider:
● Memory vs Speed
● Generic/Reusability vs Specific/Specialized
● One Function vs Another
● Robustness vs Performance

This class is all about implementing ADTs based on making the right design
tradeoffs!
A common topic in interview questions!

CSE 373 23SP 8

A quick aside: Types of memory

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

Arrays - contiguous memory: when the “new” keyword is used on an array the operating
system sets aside a single, right-sized block of computer memory

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

d672 8baf 020a 713f 04e3 2e6e3 7 3

Nodes- non-contiguous memory: when the “new” keyword is used on a single node the
operating system sets aside enough space for that object at the next available memory location

array

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

4b44 052f d3cd 23d4
front 3 7 3

More on how memory impacts runtime later in this course…

CSE 373 23SP 9

Design Decisions

Situation: Write a data structure that implements the List ADT
that will be used to store the history of a bank customer’s
transactions.

Features to consider:
- adding a new transaction
- reviewing/retrieving transaction history

Why ArrayList?
- optimized element access makes reviewing

based on order easier
- contiguous memory more efficient and less

waste than usual array usage because no
removals

Why LinkedList?
- if structured with front pointing to most

recent transaction, addition of
transactions constant time

- memory right sized for large variations in
different account history size

Slido Event #24766140
https://app.sli.do/event/pfJv
xmfmLDwu2zRTTeSZHA

Q: Would you use a LinkedList or ArrayList
implementation for this scenario?
Discuss with those around you!

https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA
https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA

CSE 373 23SP 10

Real-World Scenarios: Lists

LinkedList
● Image viewer

○ Previous and next images are linked, hence can be accessed by next and previous
button

● Dynamic memory allocation
○ We use linked list of free blocks

● Implementations of other ADTs such as Stacks, Queues, Graphs,
etc.

ArrayList
● Maintaining Database Records

○ List of records you want to add / delete from and maintain your order after
● Implementations of other ADTs such as Stacks, Queues, Graphs,

etc.

CSE 373 23SP 11

Questions?

CSE 373 23SP 12

Design Decisions Review
Stacks
Queues
Dictionaries
Questions

CSE 373 23SP 13

Review: What is a Stack?

stack: A collection based on the principle of adding
elements and retrieving them in the opposite order.
Last-In, First-Out ("LIFO")
Elements are stored in order of insertion.

- We do not think of them as having indexes.
- Client can only add/remove/examine the last element added (the "top").

top 3

2

bottom 1

pop,
peek

push

Stack ADT

push(item) add item to top
pop() return and remove item
at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

supported operations:
○ push(item): Add an element to the top of stack
○ pop(): Remove the top element and returns it
○ peek(): Examine the top element without

removing it
○ size(): how many items are in the stack?
○ isEmpty(): true if there are 1 or more items in

stack, false otherwise

CSE 373 23SP 14

Implementing a Stack with an Array

0 1 2 3push(3)
3 45

numberOfItems = 012

ArrayStack<E>

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

Stack ADT

push(item) add item to top
pop() return and remove item
at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

push(4)
pop()
push(5)

Big O Analysis

pop()

peek()

size()

isEmpty()

push()

O(1) Constant

O(N) Linear if a resize is required
O(1) Otherwise

O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 23SP 15

Implementing a Stack with Nodes

push(3)

numberOfItems = 012

LinkedStack<E>

push add new node at top
pop return and remove node at
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size

Stack ADT

push(item) add item to top
pop() return and remove item
at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

4

3frontpush(4)
pop()

Big O Analysis

pop()

peek()

size()

isEmpty()

push()

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 23SP 16

Real-World Scenarios - Stacks

● Undo/Redo Feature in editing software
○ push for every action
○ pop for every click of “undo”

● Matching tags/curly braces
○ push at every opening
○ pop at every closing, check if there’s a match

● DNA Parsing Implementation
○ stack is able to record combinations of two different DNA signals, release the signals

into solution in reverse order, and then re-record
○ social implications + ethical concerns?

■ performance of stack dependent on efficiency of “washing steps” between stack operations
● what if certain DNA needs more stack operations to parse than other? what kind of

inequalities can this create between more common and more rare DNA? what are some
social consequences of using a stack for DNA sequencing?

https://www.nature.com/articles/s41467-021-25023-6

CSE 373 23SP 17

Design Decisions Review
Stacks
Queues
Dictionaries
Questions

CSE 373 23SP 18

Review: What is a Queue?

queue: Retrieves elements in the order they were added
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only

examine/remove the front of the queue.

addremove,
peek

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

supported operations:
○ add(item): aka “enqueue” add an element to the back.
○ remove(): aka “dequeue” Remove the front element and return.
○ peek(): Examine the front element without removing it.
○ size(): how many items are stored in the queue?
○ isEmpty(): if 1 or more items in the queue returns true, false otherwise

front back

1 2 3

CSE 373 23SP 19

Implementing a Queue with an Array

0 1 2 3 4
add(5)

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 012

1

add(8)
add(9)
remove()

Big O Analysis

remove() O(1) Constant

peek() O(1) Constant

size() O(1) Constant

isEmpty() O(1) Constant

add() O(N) Linear if a resize is required
O(1) Otherwise

CSE 373 23SP 20

Implementing a Queue with an Array
(Wrap around)

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

add(4)
add(1)

6

CSE 373 23SP 21

Implementing a Queue with Nodes

add(5)

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

numberOfItems = 012

85front

back

Big O Analysis

remove() O(1) Constant

peek() O(1) Constant

size() O(1) Constant

isEmpty() O(1) Constant

add() O(1) Constant

add(8)
remove()

CSE 373 23SP 22

Real-World Examples

 Serving requests on a single shared resource
- e.g. a printer, CPU task scheduling, etc.

 Call Center phone systems us Queues to hold people calling them in order, until a
service representative is free.

 Handling of interrupts in real-time systems. The interrupts are handled in the
same order as they arrive, i.e. first come first served.

CSE 373 23SP 23

Questions?

CSE 373 23SP 24

Design Decisions Review
Stacks
Queues
Dictionaries
Questions

CSE 373 23SP 25

Dictionaries (aka Maps)

Every Programmer’s Best Friend

You’ll probably use one in almost every programming project.
Because it’s hard to make a big project without needing one sooner or later.

// two types of Map implementations supposedly covered in CSE 123
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();

CSE 373 23SP 26

Review: Maps
map: Holds a set of distinct keys and a
collection of values, where each key is
associated with one value.

- a.k.a. "dictionary"

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

supported operations:
● put(key, value): Adds a given item into

collection with associated key,
○ if the map previously had a mapping

for the given key, old value is
replaced.

● get(key): Retrieves the value mapped to
the key

● containsKey(key): returns true if key is
already associated with value in map, false
otherwise

● remove(key): Removes the given key and
its mapped value

CSE 373 23SP 27

0 1 2 3 4
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4) (‘e’, 20)put(‘e’, 20)

Big O Analysis: if the key is the last one looked at / is
not in the dictionary

put() O(N) linear

get() O(N) linear

containsKey() O(N) linear

remove() O(N) linear

size() O(1) constant

Big O Analysis: if the key is the first one looked at

put() O(1) constant

get() O(1) constant

containsKey() O(1) constant

remove() O(1) constant

size() O(1) constant

ArrayDictionary<K, V>

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given key,
return associated item if found
containsKey scan all pairs, return if key
is found
remove scan all pairs, replace pair to be
removed with last pair in collection
size return count of items in dictionary

state

behavior

Pair<K, V>[] data

Implementing a Dictionary with an Array

CSE 373 23SP 28

Implementing a Dictionary with Nodes

LinkedDictionary<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front ‘c’ 9‘b’ 7 ‘d’ 4 ‘a’ 1 20

Big O Analysis: if the key is the last one looked at / is
not in the dictionary

put() O(N) linear

get() O(N) linear

containsKey() O(N) linear

remove() O(N) linear

size() O(1) constant

Big O Analysis: if the key is the first one looked at

put() O(1) constant

get() O(1) constant

containsKey() O(1) constant

remove() O(1) constant

size() O(1) constant

CSE 373 23SP 29

Real-World Examples

● Symbol table for compilers

○ Key = symbol, Value = command meaning

● Database indexing

○ Data stored in databases is generally of the key-value format which is typically

implemented using a HashTable data structure Dictionary.

● Computer File Managing

○ each file has two very crucial information that is, filename and file path, in order to make

a connection between the filename to its corresponding file path hash tables are used

CSE 373 23SP 30

Design Decisions

Situation: You are writing a program to schedule jobs sent to a laser printer. The
laser printer should process these jobs in the order in which the requests were
received. There are busy and slow times for requests that can have large
differences in the volume of jobs sent to the printer. Which ADT and what
implementation would you use to store the jobs sent to the printer?
ADT options:
● List
● Stack
● Queue

Implementation options:
● array
● linked nodes

Kasey’s Answer
LinkedQueue
This will maintain the original order of the print jobs, but
allow you to easily cancel jobs stuck in the middle of the
queue. This will also keep the space used by the queue at
the minimum required levels despite the fact the queue will
have very different lengths at different times.

Slido Event #2048464
https://app.sli.do/event/hnnj
zEubx73ASDfQCzhPXw

Discuss with your neighbors: For the following scenario select
the appropriate ADT and implementation and explain why they
are optimal for this situation.

https://app.sli.do/event/hnnjzEubx73ASDfQCzhPXw
https://app.sli.do/event/hnnjzEubx73ASDfQCzhPXw

CSE 373 23SP 31

Design Decisions Review
Stacks
Queues
Dictionaries
Questions?

CSE 373 23SP 32

That’s all!
Have a great weekend!

