
 1CSE 373 23SP

Lecture 2: List Case Study CSE 373: Data Structures and
Algorithms

Slido Event #24766140
https://app.sli.do/event/pfJv
xmfmLDwu2zRTTeSZHA

https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA
https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA

CSE 373 23SP 2

Agenda

Quick ADT Review
List Case Study
Generics
Questions

CSE 373 23SP 3

Announcements

Things are live!
● course website – one stop for all things 373
● Ed board – get your course content questions answered + connect with

students
● Gradescope

Project 0 Released – Due Wednesday 4/5
● 143 review
● Head TA Maia is offering setup OH Friday 12:30-2:00pm CSE2 345
● Get started on setup now!

Office Hours officially start next week

Section starts tomorrow

CSE 373 23SP 4

Quick ADT Review
List Case Study
Generics
Questions

CSE 373 23SP 5

Review: Full Definitions

● Abstract Data Type (ADT)
○ A definition for expected operations and behavior
○ A mathematical description of a collection with a set of supported

operations and how they should behave when called upon
○ Describes what a collection does, not how it does it
○ Can be expressed as an interface
○ Examples: List, Map, Set

● Data Structure
○ A way of organizing and storing related data points
○ An object that implements the functionality of a specified ADT
○ Describes exactly how the collection will perform the required

operations
○ Examples: LinkedIntList, ArrayIntList

CSE 373 23SP 6

ADTs we’ll discuss this quarter

● List: an ordered sequence of elements
● Set: an unordered collection of elements
● Map: a collection of “keys” and associated “values”
● Stack: a sequence of elements that can only go in or out from one end
● Queue: a sequence of elements that go in one end and exit the other
● Priority Queue: a sequence of elements that is ordered by “priority”
● Graph: a collection of points/vertices and edges between points
● Disjoint Set: a collection of sets of elements with no overlap

CSE 373 23SP 7

Questions?

CSE 373 23SP 8

Quick ADT Review
List Case Study
Generics
Questions

CSE 373 23SP 9

Case Study: The List ADT

list: a collection storing an ordered sequence of elements
● Each item is accessible by an index
● A list has a size defined as the number of elements in the list

 Expected Behavior:
● get(index): returns the item at the given index
● set(value, index): sets the item at the given

index to the given value
● append(value): adds the given item to the end of

the list
● insert(value, index): insert the given item at

the given index maintaining order
● delete(index): removes the item at the given

index maintaining order
● size(): returns the number of elements in the list

List<String> names = new ArrayList<>();

names.add("Anish");

names.add("Amanda");

names.add(0, "Brian");

CSE 373 23SP 10

Case Study: List Implementations

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = value,
if out of space grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
append create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

CSE 373 23SP 11

Implementing Insert

0 1 2 3

insert(10, 0) 3 4 5

numberOfItems = 3

insert(element, index) with shifting

54310

4

insert(10, 0)

numberOfItems = 3

insert(element, index) with shifting

4

3 4 510

ArrayList<E>

LinkedList<E>

CSE 373 23SP 12

Implementing Delete

0 1 2 3

3 4 5

numberOfItems = 3

delete(index) with shifting

delete(0) 103 4 5

4

numberOfItems = 3

delete(index) with shifting

delete(0)

4

3 4 510

ArrayList<E>

LinkedList<E>

CSE 373 23SP 13

Implementing Append

0 1 2 3 4 5 6 7

0 1 2 3

append(2) 3 5

numberOfItems =

append(element) with growth

410

4

2

5

10 3 4 5

ArrayList<E>

append(2)

numberOfItems =

append(element) with growth

45

3 4 510 2

LinkedList<E>

CSE 373 23SP 14

Review: Complexity Class

complexity class: A category of algorithm efficiency based on the
algorithm's relationship to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

Note: You don’t have to understand all of this
right now – we’ll dive into it soon.

CSE 373 23SP 15

List ADT tradeoffs

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘h’ ‘o’ /‘e’ ‘l’ ‘l’

ArrayList<Character> myArr

front

LinkedList<Character> myLl

Last time: we used “slow” and “fast” to describe running times.

Let’s be a little more precise.

Recall these basic Big-O ideas from 12X: Suppose our list has N elements

● If a method takes a constant number of steps (like 23 or 5) its running time is O(1)
● If a method takes a linear number of steps (like 4N+3) its running time is O(N)

For ArrayLists and LinkedLists, what is the O() for each of these operations?

● Time needed to access Nth element
● Time needed to insert at end (what if the array is full?)

What are the memory tradeoffs for our two implementations?

Slido Event #24766140
https://app.sli.do/event/pfJv
xmfmLDwu2zRTTeSZHA

https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA
https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA

CSE 373 23SP 16

List ADT tradeoffs

Time needed to access Nth element:

● ArrayList:
● LinkedList:

Time needed to insert at Nth element (if the array is full!)

● ArrayList:
● LinkedList:

Amount of space used overall/across all elements

● ArrayList:
● LinkedList:

Amount of space used per element

● ArrayList:
● LinkedList:

O(1) constant time

O(N) linear time

O(N) linear time

O(N) linear time

sometimes wasted space at end of array
compact, one node for each entry

minimal, one element of array

tiny bit extra, object with two fields

CSE 373 23SP 17

Design Decisions

For every ADT there are lots of different ways to implement them

Based on your situation you should consider:
● Memory vs Speed
● Generic/Reusability vs Specific/Specialized
● One Function vs Another
● Robustness vs Performance

This class is all about implementing ADTs based on making the right design
tradeoffs!
A common topic in interview questions!

CSE 373 23SP 18

A quick aside: Types of memory

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

Arrays - contiguous memory: when the “new” keyword is used on an array the operating
system sets aside a single, right-sized block of computer memory

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

d672 8baf 020a 713f 04e3 2e6e3 7 3

Nodes- non-contiguous memory: when the “new” keyword is used on a single node the
operating system sets aside enough space for that object at the next available memory location

array

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

4b44 052f d3cd 23d4
front 3 7 3

More on how memory impacts runtime later in this course…

CSE 373 23SP 19

Design Decisions

Situation #1: Write a data structure that implements the List
ADT that will be used to store a list of songs in a playlist.

Features to consider:
- add or remove songs from list
- change song order
- shuffle play

Why ArrayList?
- optimized element access makes shuffle

more efficient
- accessing next element faster in

contiguous memory

Why LinkedList?
- easier to reorder songs
- memory right sized for changes in size of

playlist, shrinks if songs are removed

Slido Event #24766140
https://app.sli.do/event/pfJv
xmfmLDwu2zRTTeSZHA

https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA
https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA

CSE 373 23SP 20

Design Decisions

Situation #2: Write a data structure that implements the List
ADT that will be used to store the history of a bank customer’s
transactions.

Features to consider:
- adding a new transaction
- reviewing/retrieving transaction history

Why ArrayList?
- optimized element access makes reviewing

based on order easier
- contiguous memory more efficient and less

waste than usual array usage because no
removals

Why LinkedList?
- if structured with front pointing to most

recent transaction, addition of
transactions constant time

- memory right sized for large variations in
different account history size

Slido Event #24766140
https://app.sli.do/event/pfJv
xmfmLDwu2zRTTeSZHA

https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA
https://app.sli.do/event/pfJvxmfmLDwu2zRTTeSZHA

CSE 373 23SP 21

Design Decisions

Situation #3: Write a data structure that implements the List ADT that will be
used to store the order of students waiting to speak to a TA at a tutoring center

ArrayList – optimize for addition to back
LinkedList - optimize for removal from front

CSE 373 23SP 22

Real-World Scenarios: Lists

LinkedList
● Image viewer

○ Previous and next images are linked, hence can be accessed by next and previous
button

● Dynamic memory allocation
○ We use linked list of free blocks

● Implementations of other ADTs such as Stacks, Queues, Graphs,
etc.

ArrayList
● Maintaining Database Records

○ List of records you want to add / delete from and maintain your order after
● Implementations of other ADTs such as Stacks, Queues, Graphs,

etc.

CSE 373 23SP 23

Quick ADT Review
List Case Study
Generics
Questions

CSE 373 23SP 24

Quick ADT Review
List Case Study
Generics
Questions?

CSE 373 23SP 25

That’s all!

