
 1CSE 373 23SP

Lecture 1: Intro to ADTs CSE 373: Data Structures and
Algorithms

CSE 373 23SP 2

Agenda

Introductions
Syllabus
Dust off data structure cobwebs
Meet the ADT
Questions

CSE 373 23SP 3

Welcome!

This class will be complex and quick
moving, but we hope to provide lots
of support and opportunities to
connect as a community.

● Humans first, students second

● Patience, vulnerability,
compassion

● Learn to build technology that
supports all humans

CSE 373 22 SP –CHAMPION

CSE 373 23SP 4

Land Acknowledgement

“We acknowledge that we are on the traditional
land of the first people of Seattle, the Duwamish
People past and present and honor with
gratitude the land itself and the Duwamish
Tribe.”

https://www.realrentduwamish.org/

https://www.realrentduwamish.org/

CSE 373 23SP 5

Course Overview

Course Topics

-Data Structures and ADTs: lists, stacks,
queues, sets, dictionaries, arrays, linked
lists, trees, hash tables, priority queues,
binary heaps and disjoint sets

-Algorithm analysis: Big O Notation,
asymptotic analysis, P and NP complexity,
Dynamic Programming optimization

-Sorting algorithms: selection, insertion,
merge, quick, more…

-Graphs and graph algorithms: graph
search, shortest path, minimum spanning
trees

Course Goals

-Design data structures and algorithms by
implementing and maintaining invariants.

-Analyze the runtime and design values of
data structures and algorithms

-Critique the application of data structures
and algorithms towards complex problems

-Prepare for technical interviews

CSE 373 23SP 6

Waitlist / Overloads

-I have told CSE the more the merrier, but technically I have no
control over these things :/

-Email ugrad-adviser@cs.washington.edu for all registration
questions

-Many students move around, likely a spot will open
-Keep coming to lecture!

mailto:cse373@cs.washington.edu

CSE 373 23SP 7

Introductions
Syllabus
Dust off data structure cobwebs
Meet the ADT
Questions

CSE 373 23SP 8

Hello! I am Kasey Champion (she/her)

Technical Program Manager @ Google
- Kasey has to go to her “real job” during the day (L)

Previously:
- Technical Interview Content Team Lead @ Karat
- Software Engineer @ Microsoft

Electrical Engineering and Computing @ UW

champk@cs.washington.edu

bit.ly/kasey1on1s

https://calendar.google.com/calendar/u/0/appointments/schedules/AcZssZ2v7uEGZQEoTy34vTKyuyLOklLvy0wkEdREZnkFayV-P43qH9TiTsUtAcuVZQfWKfH7E9J0W1-J

CSE 373 23SP 9

Introductions
Syllabus
Dust Off Data Structure Cobwebs
Meet the ADT
Questions

CSE 373 23SP 10CSE 373 23SP

Course Components
Learning
Components

-Lectures
- Recorded on Panopto, recordings on canvas

- In-Person~ Please come hang out with us

- Each day we will cover 1 problem for weekly
exercises

- Lecture polls for EC participation

-Exercises
- Sets of conceptual problems distributed via

Gradescope

-Projects
- Programming assignments distributed via GitLab

-Assessments
- 4/28 In lecture Friday Week 5

- 5/26 In lecture Friday Week 9

- Resubmissions after you receive your grade can earn
up to ½ missed points back

-Office Hours
- TA and Kasey help to on exercises, programming

assignments, course topics
- We are here to help you move forward, not to debug

or fix your code
- 10 min per question limit

CSE 373 23SP 11CSE 373 23SP

-Class Webpage
- cs.washington.edu/373

- Central location for all information

-Course Canvas
- Gradebook

- Panopto lecture recordings

-Slido
-Lecture participation and questions

-EdStem
- Course discussion board

- Lecture companion lessons

-Gradescope
- Exercise distribution and submission

-GitLab
- Project file distribution and submission

-Anonymous Feedback Tool
- Tell us how it’s going

Course Components
Course Tools

CSE 373 23SP 12CSE 373 23SP

-Class Webpage
- Central location for all information

-Course Canvas
- Gradebook

-Zoom
- Some Office Hours

-Gradescope
- Exercise distribution and submission

-Ed Discussion Board
- Get help
- Lecture questions
- Find partners

-GitLab
- Project file distribution and submission

-Anonymous Feedback Tool
- Tell us how it’s going

Course Policies
Turn In Policies

- 5 late days per student
- use for projects or exercises

- use up to 3 per assignment unless you speak to
Kasey

- Assignments
- Solo or groups of 3

- Projects out/in on Wednesdays

- Exercises out/in on Mondays

- after all late days used up -5% for each 24-hour
period turned in late

- Exams
- In person during lecture

- Open note/open book, no staff help

- Grades to be returned wednesday following

- Resubmission due 1 week after grades posted

- No late exam resubmissions accepted

CSE 373 23SP 13CSE 373 23SP

Course Policies
Cont.

- Grade Breakdown
- Programming Projects (40%)

- Written Exercises (30%)

- Exam I (15%)

- Exam II (15%)

- Participation (EC round up to 0.05)

- Academic Misconduct
- Don’t share your code

- Don’t look at others’ code

- Don’t “step by step”

- DO talk to one another about concepts and approaches

- DO look things up on the internet

- No posting code on discussion boards or ANYWHERE online

- We do run MOSS

- ChatGPT - it is ok to use this to inspire your solutions, but if you
submit code you did not write and do not understand that is
academic misconduct

- Accomodations and Extenuating Circumstance
- Make sure you get the support you are entitled to via DRS

- If you’re having issues with DRS system reach out to Kasey

- When in doubt, reach out!

CSE 373 23SP 14

A Note About Transitioning Back to In-Person

 We are all figuring
 this out as we go!

Section
-Similar to lecture
-Please be prepared to work with other students
-Discuss in small groups when working on problems

Office Hours
-Both online and in-person meetings, logistics coming later

this week
-Feel free to use this to meet and engage with one another (but

make sure you are not sharing code, only ideas!)
-Please be prepared to share your screen

-Turn on mic

Let us know what works!
-Share what you’ve seen elsewhere

-Use the anonymous feedback form

-Always happy to take suggestions / feedback ☺

CSE 373 23SP 15

Questions?

Clarification on syllabus, General complaining/moaning

CSE 373 23SP 16

What is this class about?

CSE 143 – OBJECT ORIENTED PROGRAMMING

-Classes and Interfaces

-Methods, variables and
conditionals

-Loops and recursion

-Linked lists and binary trees

-Sorting and Searching

-O(n) analysis

CSE 373 – DATA STRUCTURES AND ALGORITHMS

-Design decisions

-Design analysis

-Implementations of data
structures

-Debugging and testing

-Abstract Data Types

-Code Modeling

-Complexity Analysis

-Software Engineering Practices

CSE 142 – INTRO TO PROGRAMMING

-Java syntax

-Methods

-Variables

-Parameters & Returns

-File IO

-Scanner

-Arrays

Vocab Grammar Creative Writing

CSE 373 23SP 17

Introductions
Syllabus
Dust off Data Structure Cobwebs
Meet the ADT
Questions

CSE 373 23SP 18

Basic Definitions

Data Structure
-A way of organizing and storing data
-Examples from CSE 14X/12X: arrays, linked lists, stacks, queues, trees

Algorithm
-A series of precise instructions to produce to a specific outcome
-Examples from CSE 14X/12X: binary search, merge sort, recursive backtracking

CSE 373 23SP 19

Review: Clients vs Objects

CLIENT CLASSES

CSE 143 WI 18 – WHITAKER BRAND

A class that is executable, in Java this means
it contains a Main method

public static void main(String[] args)

OBJECT CLASSES

A coded structure that contains data and
behavior

Start with the data you want to hold,
organize the things you want to enable
users to do with that data

CSE 373 23SP 20

Introductions
Syllabus
Dust off Data Structure Cobwebs
Meet the ADT
Questions

CSE 373 23SP 21

Abstract Data Types (ADT)

Abstract Data Type
-A type of organization of data that we define through its behavior and operations

- Defines the input and outputs, not the implementations

Invented in 1974 by Barbara Liskov
What we desire from an abstraction is a
mechanism which permits the expression of
relevant details and the suppression of
irrelevant details. In the case of programming,
the use which may be made of an abstraction is
relevant; the way in which the abstraction is
implemented is irrelevant. — Barbara Liskov

Source Article

https://en.wikipedia.org/wiki/Barbara_Liskov
https://medium.com/a-computer-of-ones-own/barbara-liskov-inventor-of-abstract-data-types-9f8908fdcf86

CSE 373 23SP 22

Abstract Data Types (ADT): List Example

-each element is accessible by a 0-based index

-a list has a size (number of elements that have been added)

-elements can be added to the front, back, or elsewhere

-the ADT of a list can be implemented many ways through
different Data Structures

- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements

CSE 373 23SP 23

interface: a construct in Java that defines a set of
methods that a class promises to implement

Review: Interfaces

// Describes features common to all
// shapes.

public interface Shape {
 public double area();
 public double perimeter();

}

Example

- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no
code.

- Analogous to non-programming idea of roles/certifications:

- "I'm 'certified' as a Shape, because I implement the Shape
interface. This assures you I know how to compute my area and
perimeter."

- "I'm ‘certified’ as a CPA accountant. This assures you I know how to
do taxes, audits, and consulting."

public interface name {
public type name(type name, …, type name);
public type name(type name, …, type name);
…

}

CSE 373 23SP 24

interface: a construct in Java that defines a set of
methods that a class promises to implement

Review: Interfaces: List Example

// Describes features common to all lists.

public interface List<E> {
public E get(int index);
public void set(E element, int index);
public void append(E element);
public E remove(int index);
…

// many more methods
}

In terms of ADTs, interfaces help us make sure that our
implementations of that ADT are doing what they need to

For example, we could define an interface for the ADT
List<E> and any class that implements it must have
implementations for all of the defined methods

note: this is not how the List<E> interface actually looks, as in
reality it extends another interface

CSE 373 23SP 25

List<Integer> a = new ArrayList<Integer>();

Stack<Character> c = new Stack<Character>();

Queue<String> b = new LinkedList<String>();

Map<String, String> d = new TreeMap<String, String>();

 Lists

 Stacks

 Queues

 Maps

Review: Java Collections

ADTs Data Structures

Java provides some implementations of ADTs for you!

But some data structures you made from scratch… why?

Linked Lists - LinkedIntList was a collection of ListNode
Binary Search Trees – SearchTree was a collection of SearchTreeNodes

CSE 373 23SP 26

Full Definitions

 Abstract Data Type (ADT)
-A definition for expected operations and behavior

-A mathematical description of a collection with a set of supported operations and how they
should behave when called upon

-Describes what a collection does, not how it does it

-Can be expressed as an interface

-Examples: List, Map, Set

 Data Structure
-A way of organizing and storing related data points

-An object that implements the functionality of a specified ADT

-Describes exactly how the collection will perform the required operations

-Examples: LinkedIntList, ArrayIntList

CSE 373 23SP 27

ADTs and Data Structures: (Loose) Analogy

Mode of Transportation

Must be able to move

Must be able to be steered

Car Airplane Bike

Tires Engines/wings Wheels

Steering wheel Control column Handlebars

 Abstract Data Type (ADT) Data Structures

CSE 373 23SP 28

ADTs and Data Structures: List Example

 List - Abstract Data Type (ADT) ArrayIntList - Data Structure

// Describes features common to all lists.

public interface List<E> {
public E get(int index);
public void set(E element, int index);
public void append(E element);
public E remove(int index);
…

}

public class ArrayIntList extends List<E>{
private int[] list;
private int size;

public ArrayIntList(){
//initialize fields

}

public int get(int index){
return list[index];

}

public void set(E element, int index){
list[index] = element;

}
…

}

CSE 373 23SP 29

ADTs we’ll discuss this quarter

-List: an ordered sequence of elements
-Set: an unordered collection of elements
-Map: a collection of “keys” and associated “values”
-Stack: a sequence of elements that can only go in or out from one end
-Queue: a sequence of elements that go in one end and exit the other
-Priority Queue: a sequence of elements that is ordered by “priority”
-Graph: a collection of points/vertices and edges between points
-Disjoint Set: a collection of sets of elements with no overlap

CSE 373 23SP 30

Introductions
Syllabus
Data Structures and Algorithms
Meet the ADT
Questions?

CSE 373 23SP 31

That’s all!

