Section 02: Asymptotic Analysis

Section Problems

1. Comparing growth rates

(a) Simplify each of the following functions to a tight big-O bound in terms of n. Then order them from fastest to slowest in terms of asymptotic growth. (By “fastest”, we mean which function increases the most rapidly as n increases.)

- $\log_4(n) + \log_2(n)$
- $\frac{n}{2} + 4$
- $2^n + 3$
- 750,000,000
- $8n + 4n^2$

(b) Order each of these more esoteric functions from fastest to slowest in terms of asymptotic growth. (By “fastest”, we mean which function increases the most rapidly as n increases.) Also state a simplified tight O bound for each.

- $2^{n/2}$
- 3^n
- 2^n

2. True or false?

(a) In the worst case, finding an element in a sorted array using binary search is $O(n)$.

(b) In the worst case, finding an element in a sorted array using binary search is $\Omega(n)$.

(c) If a function is in $\Omega(n)$, then it could also be in $O(n^2)$.

(d) If a function is in $\Theta(n)$, then it could also be in $O(n^2)$.

(e) If a function is in $\Omega(n)$, then it is always in $O(n)$.

3. Code to summation

For each of the following code blocks, give a summation that represents the worst-case runtime in terms of n.

```c
int x = 0;
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        x++;
    }
}
```
4. Code modeling

For each of the following code blocks, construct a mathematical function modeling the worst-case runtime of the code in terms of n. Then, give a tight big-O bound of your model.

(a)
```c
int x = 0;
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n * n / 3; j++) {
        x += j;
    }
}
```

(b)
```c
int x = 0;
for (int i = n; i >= 0; i -= 1) {
    if (i % 3 == 0) {
        break;
    } else {
        x += n;
    }
}
```

(c)
```c
int x = 0;
for (int i = 0; i < n; i++) {
    if (i % 5 == 0) {
        for (int j = 0; j < n; j++) {
            if (i == j) {
                x += i * j;
            }
        }
    }
}
```

(d)
```c
int x = 0;
for (int i = 0; i < n; i++) {
    if (n < 100000) {
        for (int j = 0; j < n; j++) {
            x += 1;
        }
    } else {
        x += 1;
    }
}
int x = 0;
if (n % 2 == 0) {
    for (int i = 0; i < n * n * n * n; i++) {
        x++;
    }
} else {
    for (int i = 0; i < n * n * n; i++) {
        x++;
    }
}

5. Applying definitions

For each of the following, choose a c and n₀ which show \( f(n) \in O(g(n)) \). Explain why your values of c and n₀ work.

(a) \( f(n) = 3n + 4, g(n) = 5n^2 \)

(b) \( f(n) = 33n^3 + \sqrt{n} - 6, g(n) = 17n^4 \)

(c) \( f(n) = 17 \log(n), g(n) = 32n + 2n \log(n) \)

6. Using our definitions

Most of the time in the real world, we don’t write formal big-O proofs. The point of having these definitions is not to use them every single time we think about big-O. Instead, we use the formal definitions when a question is particularly tricky, or we want to make a very general statement.

Here are some particularly tricky or general statements that are easier to justify with the formal definitions than with just your intuition.

(a) We almost never say a function is \( O(5n) \), we always say it is \( O(n) \) instead. Show that this transformation is ok, i.e. that if \( f(n) \) is \( O(5n) \) then it is \( O(n) \) as well.

(b) When we decide on the big-O running time of a function, we like to say that whatever happens on small \( n \) doesn’t matter. Let’s see why with an actual proof. You write two functions to solve the same problem: method1 and method2. method1 takes \( O(n^2) \) time and method2 takes \( O(n) \) time. What is the big-O running time of the following function:

```java
public void combined(n){
 if(n < 10000)
 method1(n);
 else
 method2(n);
}
```
7. Memory analysis

For each of the following functions, construct a mathematical function modeling the amount of memory used by the algorithm in terms of $n$. Then, give a tight big-$O$ bound of your model.

(a) List<Integer> list = new LinkedList<Integer>();
    for (int i = 0; i < n * n; i++) {
        list.insert(i);
    }
    Iterator<Integer> it = list.iterator();
    while (it.hasNext()) {
        System.out.println(it.next());
    }

(b) int[] arr = {0, 0, 0};
    for (int i = 0; i < n; i++) {
        arr[0]++;
    }

(c) ArrayDictionary<Integer, String> dict = new ArrayDictionary<>();
    for (int i = 0; i < n; i++) {
        String curr = "";
        for (int j = 0; j < i; j++) {
            for (int k = 0; k < j; k++) {
                curr += "?";
            }
        }
        dict.put(i, curr);
    }

**Note 1:** For simplicity, assume the dictionary has an internal capacity of exactly $n$.

**Note 2:** The amount of memory used by a single character ($c$) and the amount of memory used by a single int ($x$) are both constant.

**Note 3:** An ArrayDictionary stores its key-value pairs contiguously, and performs scans through (potentially) the entire data structure when performing an insert() or a find().