
Lecture 26: Tries CSE 373: Data Structures and
Algorithms

1

Memory & B Trees Takeaways
Memory in your computer is organized into layers spanning out from the CPU > L1 Cache >
L2 Cache > RAM > Disk
- cache: a place to store some memory that’s smaller and closer to the CPU compared to RAM

- Analogy: refrigerator keeps food closer to kitchen than store
- Getting data from cache to CPU is a lot quicker than from RAM to CPU.
- the more memory a layer can store, the slower it is (generally)
- accessing the disk is very slow

Operating system is “the memory boss”
- pulls data from outer layers closer to CPU based on usage
- When do we “evict” memory to make room? How does the OS minimize disk accesses?
- Temporal locality: Once we load something into RAM or cache, keep it around or a while

- Analogy: top layer of clothing stays on floor, don’t wash that knife you just used to cut a sandwich just yet (I am a good adult I swear)
- EX: if you accessed one index of an array in the cache, keep that array around for a while

- Spatial Locality: Computers try to partition memory you are likely to use close by
- Analogy: if you’re going to your storage unit, might as well fill up your car
- EX: if you ask for one index of an array from RAM, pull the whole array down

2CSE 373 21 SP – CHAMPION

Announcements
P4 due a week from today
- please get started soon

Interview practice tomorrow in section
TA Career Panel
Memorial day next week
- no class, no office hours
- Office hours end on Friday June 4th

Grades posted to canvas
- late penalties have yet to be applied
- please let us know if there are any issues
- regrade requests live on gradescope

Course Evals are out
- please fill out the official one
- supplemental one – if we get over 90.5% everyone gets 1-point ec!

TA Lead Final Review

3CSE 373 21 SP – CHAMPION

Final Exam Topics
Sorting
- Sorting algorithm properties (stable, in-place)
- Quadratic sorts: insertion sort, selection sort
- Faster sorts: heap sort, merge sort, quick sort
- Runtimes of all of the above (in the best and worst case)

Graphs
- definitions (e.g., directed, undirected, weighted, unweighted,

walks, paths, cycles, self-loops, parallel edges, trees, DAGs, etc.)
- implementations (Adjacency list, Adjacency matrix, and their

pros and cons)
- traversals (BFS and DFS)
- Single-source shortest-path algorithms: Dijkstra's algorithm
- Topological sort
- MST algorithms: Prim and Kruskal
- Disjoint sets
- Framing/modeling problems with graphs

Coding Projects
- Implementation of each data structure
- Best / average / worst case runtime for each method of each

data structure

4CSE 373 21 SP – CHAMPION

Design Decisions
- Given a scenario, what ADT, data structure implementation

and/or algorithm is best optimized for your goals?
- What is unique or specialized about your chosen tool?
- How do the specialized features of your chosen tool

contribute to solving the given problem scenario?
- How expensive is this tool and its features in terms of

runtime and memory?
- Given a scenario, what changes might you make to a design to

better serve your goals?
Memory and Locality

- How to leverage caching
Pre-midterm topics

- all ADTs and data structures
- Asymptotic analysis

- Code Modeling (including recurrences)
- Complexity Classes
- Big O, Omega, Theta

- BSTs, AVL Trees
- Hashing
- Heaps

Autocomplete
• Search Engines support autocomplete.
• How do you efficiently implement autocomplete with the ADTs we

know so far?
• Formal Problem: Given a “prefix” of a string, find all strings in a set of

possible strings that have the given prefix.

Tries: A Specialized Data Structure

a

y

a

q

u

a

pair

part

partspar

Binary Search Tree Hash TableTrie

da

Tries are a character-by-character set-of-Strings implementation

Nodes store parts of keys instead of keys

t

aqua

pawa

0

1

2

3

aqua

a par

paw pair

parts

part

s

d

20AU - SCHAFERTrying to Understand Tries.

https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

Abstract Trie
Each level represents an index
- Children represent next possible characters at that index
This Trie stores the following set of Strings:

a, aqua, dad,

data, day, days

How do we deal with a and aqua?
- Mark complete Strings with a boolean (shown in blue)
- Complete string: a String that belongs in our set

a

y

a

q

u

a

da

t

s

d

Abstract Trie

Index 0

Index 1

Index 2

Index 3

0 0

0 0

1

1 1

2

2 2 3

0 1 2 3

0 1 2 3

20AU - SCHAFER

Searching in Tries a, aqua, dad,

data, day, days

𝒏 = 𝟔

a

y

a

q

u

a

da

t

s

d

Search hit: the final node is a key (colored blue)
Search miss: caused in one of two ways
1. The final node is not a key (not colored blue)
2. We “fall” off the Trie

contains("data") // hit, 𝑙 = 4
contains("da") // miss, 𝑙 = 2
contains("a") // hit, 𝑙 = 1
contains("dubs") // miss, 𝑙 = 4

contains runtime given key of length 𝑙 with 𝑛 keys in Trie: Θ(𝑙)

Abstract Trie

20AU - SCHAFER

Prefix Operations with Tries
The main appeal of Tries is its efficient prefix matching!

Prefix: find set of keys associated with given prefix
keysWithPrefix("day") returns ["day", "days"]

Longest Prefix From Trie: given a String, retrieve
longest prefix of that String that exists in the Trie

longestPrefixOf("aquarium") returns "aqua"
longestPrefixOf("aqueous") returns "aqu"
longestPrefixOf("dawgs") returns "da"

a, aqua, dad,
data, day, days

a

y

a

q

u

a

da

t

s

d

Abstract Trie

20AU - SCHAFER

collectHelper("a", keys,)

collectHelper("aq", keys,)

collectHelper("aqu", keys,)

Collecting Trie Keys

collectHelper("aqua", keys,)

d

a

td y

a

a

q

u

a s

• Collect: return set of all keys in the Trie (like keySet())
collect(trie) = ["a", "aqua", "dad", "data", "day", "days"]

List collect() {
List keys;
for (Node c : root.children) {

collectHelper(n.char, keys, c);
}
return keys;

}

void collectHelper(String str, List keys, Node n) {
if (n.isKey()) {

keys.add(s);
}
for (Node c : n.children) {

collectHelper(str + c.char, keys, c);
}

}

20AU - SCHAFER

keysWithPrefix Implementation
• keysWithPrefix(String prefix)

- Find all the keys that corresponds to the given prefix
List keysWithPrefix(String prefix) {

Node root; // Node corresponding to given prefix
List keys; // Empty list to store keys

for (Node n : root.children) {
collectHelper(prefix + n.char, keys, c);

}
}

void collectHelper(String str, List keys, Node n) {
if (n.isKey()) {

keys.add(s);
}
for (Node c : n.children) {

collectHelper(str + c.char, keys, c);
}

}

a

y

a

q

u

a

da

t

s

d

root

20AU - SCHAFER

Autocomplete with Tries
• Autocomplete should return the most relevant results

• One method: a Trie-based Map<String, Relevance>
- When a user types in a string "hello", call keysWithPrefix("hello")
- Return the 10 Strings with the highest relevance

20AU - SCHAFER

Lecture Outline
Tries Introduction

Implementing a Trie using arrays

Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees

20AU - SCHAFER

Trie Implementation Idea: Encoding

20AU - SCHAFER

DataIndexedCharMap Pseudocode
class TrieSet {

final int R = 128; // # of ASCII encodings
Node overallRoot;

// Private internal class
class Node {
// Field declarations

char ch;
boolean isKey;
DataIndexedCharMap<Node> next; // array encoding

// Constructor
Node(char c, boolean b, int R) {

ch = c;
isKey = b;
next = new DataIndexedCharMap<Node>(R);

}
}

}

a

y

a

q

u

a

da

t

s

d

20AU - SCHAFER

Data Structure for Trie Implementation
• Think of a Binary Tree

- Instead of two children, we have 128 possible children
- Each child represents a possible next character of our Trie

• How could we store these 128 children?

… …

2 children 128 children

20AU - SCHAFER

Data-Indexed Array Visualization

…

…

u

p

u

…
p

𝑅 = 128 links, 127 null

// Private internal class
class Node {

// Field declarations
char ch;
boolean isKey;
DataIndexedCharMap<Node> next;

}

Node

ch u

isKey false

next items

DataIndexedCharMap

0 1 … 111 112 113 … 126 127

Node

ch p

isKey true

next items

DataIndexedCharMap

0 1 … … … … … 126 127

20AU - SCHAFER

Removing Redundancy
class TrieSet {

final int R = 128;
Node overallRoot;

// Private internal class
class Node {
// Field declarations

char ch;
boolean isKey;
DataIndexedCharMap<Node> next;

// Constructor
Node(char c, boolean b, int R) {

ch = c;
isKey = b;
next = new DataIndexedCharMap<Node>(R);

}
}

}

ea b c

q

u

a

d

a

ytd

a

… …

… …

…

… … ……

… …

…… … …

q a

u

aa

s

…

t yd

s

a edcb

20AU - SCHAFER

Pause Video when Prompted

a) Yes
b) No
c) I’m not sure…

Does the structure of a Trie depend on the order of insertion?

… …

… …

…

… … ……

… …

…… … …

q a

u

aa

…

t yd

s

a edcb

20AU - SCHAFER

• Typical runtime when treating length 𝑙 of
keys as a constant:

• Takeaways:
+ When keys are Strings, Tries give us a better add and contains runtime
− DataIndexedCharMap takes up a lot of space by storing 𝑅 links per node

Runtime Comparison

* In-practice runtime

Data Structure Key Type contains add keysWithPrefix

Balanced BST Comparable Θ(log(𝑛)) Θ(log(𝑛)) Θ(n)

Hash Map Hashable Θ(1)* Θ 1 * Θ(n)

Trie (Data-Indexed Array) String (Character) Θ(1) Θ(1) Θ(p) **

u

p

u

…
p

𝑅 = 128 links, 127 null
(unused)

** Where p is the number of strings
with the given prefix. Usually p << n.

20AU - SCHAFER

Lecture Outline
Tries Introduction

Implementing a Trie using arrays

Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees

20AU - SCHAFER

DataIndexedCharMap Implementation

Data-Indexed Array TrieAbstract Trie

u

p

a

22

key = "up"

key = "a"

… 109 110 111 112 …

… 97 … 117 118 …

isKey = false

isKey = true

isKey = true

isKey = false

20AU - SCHAFER

Hash Table-based Implementation

Hash Table-based Trie

23

key = "up"

key = "a"

isKey = false

isKey = true

isKey = true

isKey = false
0

1
2

0

1
2

0

1
2

0

1
2

• Use Hash Table to find character at a given index

Abstract Trie

u

p

a

20AU - SCHAFER

BST-based Implementation
• Use Binary Search Tree to find character at a given index
• Two types of children:

1) “Trie” child: advance a character (index)
2) “Internal” child: another character

option at current character (index)

• Both are essentially child references
- Could we simplify this design?

24

key = "up"

key = "a"

isKey = false

isKey = true

isKey = true

isKey = false

BST-based Trie

Each Trie node stores
its own BST

2) “Internal” children
(another character option)

1) “Trie” children
(advance a character)

Abstract Trie

u

p

a

20AU - SCHAFER

Ternary Search Tree (TST) Implementation
• Combines character mapping with Trie itself

“Trie” child:
advance to next
String index

“Internal” left child
(smaller character at

same index)

“Internal” right child
(greater character at

same index)

a

p

u

Abstract Trie Ternary Search Tree (TST)

Index 0

Index 1

u

a p

Index 0

Index 1

20AU - SCHAFER

Pause Video when Prompted

Which node is associated with the key "CAC"?
A

C

C

G

G

C
G

C

C

A

G

C

C

1

2

3

4

5

6

Tries in COS 226 (Sedgewick, Wayne/Princeton)
20AU - SCHAFER

Searching in a TST
• Searching in a TST

- If smaller, take left link
- If greater, take right link
- If equal, take the middle link and move to next character

• Search hit: final node yields a key that belongs in our set
• Search miss: reach null link or final node is yields a key not in our set

a

p

u

Abstract Trie Ternary Search Tree (TST)

Index 0

Index 0

Index 1
Index 1

[a , u p]

0 0 1Index:

Keys:

u

a p

20AU - SCHAFER

Trie Takeaways
• Tries can be used for storing Strings (or any sequential data)
• Real-world performance often better than Hash Table or Search Tree
• Many different implementations: DataIndexedCharMap, Hash Tables,

BSTs (and more possible data structures within nodes), and TSTs
• Tries enable efficient prefix operations like keysWithPrefix

a

y

a

q

u

a

pair

part

partspar

Binary Search Tree Hash TableTrie

da

t

aqua

pawa

0

1

2

3

aqua

a par

paw pair

parts

part

s

d

20AU - SCHAFER

