
Lecture 26: Tries CSE 373: Data Structures and 
Algorithms
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Memory & B Trees Takeaways
Memory in your computer is organized into layers spanning out from the CPU > L1 Cache > 
L2 Cache > RAM > Disk
- cache: a place to store some memory that’s smaller and closer to the CPU compared to RAM

- Analogy: refrigerator keeps food closer to kitchen than store
- Getting data from cache to CPU is a lot quicker than from RAM to CPU.  
- the more memory a layer can store, the slower it is (generally)
- accessing the disk is very slow

Operating system is “the memory boss”
- pulls data from outer layers closer to CPU based on usage
- When do we “evict” memory to make room? How does the OS minimize disk accesses?
- Temporal locality: Once we load something into RAM or cache, keep it around or a while

- Analogy: top layer of clothing stays on floor, don’t wash that knife you just used to cut a sandwich just yet (I am a good adult I swear)
- EX: if you accessed one index of an array in the cache, keep that array around for a while

- Spatial Locality: Computers try to partition memory you are likely to use close by
- Analogy: if you’re going to your storage unit, might as well fill up your car
- EX: if you ask for one index of an array from RAM, pull the whole array down
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Announcements
P4 due a week from today
- please get started soon

Interview practice tomorrow in section
TA Career Panel 
Memorial day next week
- no class, no office hours
- Office hours end on Friday June 4th 

Grades posted to canvas
- late penalties have yet to be applied
- please let us know if there are any issues
- regrade requests live on gradescope

Course Evals are out
- please fill out the official one
- supplemental one – if we get over 90.5% everyone gets 1-point ec!

TA Lead Final Review
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Final Exam Topics
Sorting
- Sorting algorithm properties (stable, in-place)
- Quadratic sorts: insertion sort, selection sort
- Faster sorts: heap sort, merge sort, quick sort
- Runtimes of all of the above (in the best and worst case)

Graphs
- definitions (e.g., directed, undirected, weighted, unweighted, 

walks, paths, cycles, self-loops, parallel edges, trees, DAGs, etc.)
- implementations (Adjacency list, Adjacency matrix, and their 

pros and cons)
- traversals (BFS and DFS)
- Single-source shortest-path algorithms: Dijkstra's algorithm
- Topological sort
- MST algorithms: Prim and Kruskal
- Disjoint sets
- Framing/modeling problems with graphs

Coding Projects
- Implementation of each data structure
- Best / average / worst case runtime for each method of each 

data structure
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Design Decisions
- Given a scenario, what ADT, data structure implementation 

and/or algorithm is best optimized for your goals?
- What is unique or specialized about your chosen tool?
- How do the specialized features of your chosen tool 

contribute to solving the given problem scenario?
- How expensive is this tool and its features in terms of 

runtime and memory?
- Given a scenario, what changes might you make to a design to 

better serve your goals?
Memory and Locality

- How to leverage caching
Pre-midterm topics

- all ADTs and data structures
- Asymptotic analysis

- Code Modeling (including recurrences)
- Complexity Classes
- Big O, Omega, Theta

- BSTs, AVL Trees
- Hashing
- Heaps



Autocomplete
• Search Engines support autocomplete. 
• How do you efficiently implement autocomplete with the ADTs we 

know so far?
• Formal Problem: Given a “prefix” of a string, find all strings in a set of 

possible strings that have the given prefix.



Tries: A Specialized Data Structure
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https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014


Abstract Trie
Each level represents an index
- Children represent next possible characters at that index
This Trie stores the following set of Strings:

a, aqua, dad,

data, day, days

How do we deal with a and aqua?
- Mark complete Strings with a boolean (shown in blue)
- Complete string: a String that belongs in our set
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Searching in Tries a, aqua, dad,

data, day, days

𝒏 = 𝟔
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Search hit: the final node is a key (colored blue)
Search miss: caused in one of two ways
1. The final node is not a key (not colored blue)
2. We “fall” off the Trie

contains("data")  // hit,  𝑙 = 4
contains("da") // miss, 𝑙 = 2
contains("a") // hit,  𝑙 = 1
contains("dubs") // miss, 𝑙 = 4

contains runtime given key of length 𝑙 with 𝑛 keys in Trie: Θ(𝑙)

Abstract Trie
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Prefix Operations with Tries
The main appeal of Tries is its efficient prefix matching!

Prefix: find set of keys associated with given prefix
keysWithPrefix("day") returns ["day", "days"]

Longest Prefix From Trie: given a String, retrieve
longest prefix of that String that exists in the Trie 

longestPrefixOf("aquarium") returns "aqua"
longestPrefixOf("aqueous") returns "aqu"
longestPrefixOf("dawgs") returns "da"

a, aqua, dad,
data, day, days
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collectHelper("a", keys,      )

collectHelper("aq", keys,      )

collectHelper("aqu", keys,      )

Collecting Trie Keys

collectHelper("aqua", keys,      )
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• Collect: return set of all keys in the Trie (like keySet())
collect(trie) = ["a", "aqua", "dad", "data", "day", "days"]

List collect() {
List keys;
for (Node c : root.children) {

collectHelper(n.char, keys, c);
}
return keys;

}

void collectHelper(String str, List keys, Node n) {
if (n.isKey()) {

keys.add(s);
}
for (Node c : n.children) {

collectHelper(str + c.char, keys, c);
}

}
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keysWithPrefix Implementation
• keysWithPrefix(String prefix)

- Find all the keys that corresponds to the given prefix
List keysWithPrefix(String prefix) {

Node root;  // Node corresponding to given prefix
List keys;  // Empty list to store keys

for (Node n : root.children) {
collectHelper(prefix + n.char, keys, c);

}
}

void collectHelper(String str, List keys, Node n) {
if (n.isKey()) {

keys.add(s);
}
for (Node c : n.children) {

collectHelper(str + c.char, keys, c);
}

}
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Autocomplete with Tries
• Autocomplete should return the most relevant results

• One method: a Trie-based Map<String, Relevance>
- When a user types in a string "hello", call keysWithPrefix("hello")
- Return the 10 Strings with the highest relevance
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Lecture Outline
Tries Introduction

Implementing a Trie using arrays

Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees
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Trie Implementation Idea: Encoding
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DataIndexedCharMap Pseudocode
class TrieSet {

final int R = 128;  // # of ASCII encodings
Node overallRoot;

// Private internal class
class Node {
// Field declarations

char ch;
boolean isKey;
DataIndexedCharMap<Node> next;  // array encoding

// Constructor
Node(char c, boolean b, int R) {

ch = c;
isKey = b;
next = new DataIndexedCharMap<Node>(R);

}
}

}
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Data Structure for Trie Implementation
• Think of a Binary Tree

- Instead of two children, we have 128 possible children
- Each child represents a possible next character of our Trie

• How could we store these 128 children?

… …

2 children 128 children
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Data-Indexed Array Visualization
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// Private internal class
class Node {

// Field declarations
char ch;
boolean isKey;
DataIndexedCharMap<Node> next;

}

Node
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Removing Redundancy
class TrieSet {

final int R = 128;
Node overallRoot;

// Private internal class
class Node {
// Field declarations

char ch;
boolean isKey;
DataIndexedCharMap<Node> next;

// Constructor
Node(char c, boolean b, int R) {

ch = c;
isKey = b;
next = new DataIndexedCharMap<Node>(R);

}
}

}
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Pause Video when Prompted

a) Yes
b) No
c) I’m not sure…

Does the structure of a Trie depend on the order of insertion?
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• Typical runtime when treating length 𝑙 of 
keys as a constant:

• Takeaways:
+ When keys are Strings, Tries give us a better add and contains runtime
− DataIndexedCharMap takes up a lot of space by storing 𝑅 links per node

Runtime Comparison

* In-practice runtime

Data Structure Key Type contains add keysWithPrefix

Balanced BST Comparable Θ(log(𝑛)) Θ(log(𝑛)) Θ(n)

Hash Map Hashable Θ(1)* Θ 1 * Θ(n)

Trie (Data-Indexed Array) String (Character) Θ(1) Θ(1) Θ(p) **

u

p

u

…
p

𝑅 = 128 links, 127 null
(unused)

** Where p is the number of strings 
with the given prefix. Usually p << n.
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Lecture Outline
Tries Introduction

Implementing a Trie using arrays

Advanced Implementations: dealing with sparsity
- Hash Tables, BSTs, and Ternary Search Trees
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DataIndexedCharMap Implementation

Data-Indexed Array TrieAbstract Trie
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Hash Table-based Implementation

Hash Table-based Trie
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BST-based Implementation
• Use Binary Search Tree to find character at a given index
• Two types of children:

1) “Trie” child: advance a character (index)
2) “Internal” child: another character

option at current character (index)

• Both are essentially child references
- Could we simplify this design?
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Each Trie node stores 
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Ternary Search Tree (TST) Implementation
• Combines character mapping with Trie itself

“Trie” child: 
advance to next 
String index

“Internal” left child
(smaller character at 

same index) 

“Internal” right child
(greater character at 

same index)
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Pause Video when Prompted

Which node is associated with the key "CAC"?
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Tries in COS 226 (Sedgewick, Wayne/Princeton)
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Searching in a TST
• Searching in a TST

- If smaller, take left link
- If greater, take right link
- If equal, take the middle link and move to next character

• Search hit: final node yields a key that belongs in our set
• Search miss: reach null link or final node is yields a key not in our set 
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Trie Takeaways
• Tries can be used for storing Strings (or any sequential data)
• Real-world performance often better than Hash Table or Search Tree
• Many different implementations: DataIndexedCharMap, Hash Tables, 

BSTs (and more possible data structures within nodes), and TSTs
• Tries enable efficient prefix operations like keysWithPrefix
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