
Lecture 25: B Trees CSE 373: Data Structures and
Algorithms

1

Warm Up
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}

CSE 373 SP 18 - KASEY CHAMPION 2

public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[j][i];

}
}
return output;

}

Why might these two methods, who have identical asymptotic analysis, produce such different runtime graphs?

Announcements
Class Policy Updates:
- Everyone gets +2 late days (thanks TAs!)
- Extending the late turn in from 3 days after due date to 5 days after due date

P4 due Wednesday June 2nd

Tech Career Resources
- Section 9 Thursday 5/27 Interview Prep

3CSE 373 21 SP – CHAMPION

Memory & Locality!

4CSE 373 20 SP – CHAMPION & CHUN

RAM can be represented as a huge array

CSE 373 SP 19 - KASEY CHAMPION 5

=

This is a main
takeaway

If you’re interested in deeper than this : https://www.youtube.com/watch?v=fpnE6UAfbtU or take some EE classes?

RAM:
- addresses, storing stuff at specific locations
- random access

Arrays
- indices, storing stuff at specific locations
- random access

https://www.youtube.com/watch?v=fpnE6UAfbtU

A rough view of arrays and linked lists

CSE 373 SP 19 - KASEY CHAMPION6

int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3);
front.next = new Node(7);
front.next.next = new Node(3);

3 7 3

37 3

(drawing singly linked list instead of doubly
because drawings are hard / the two are
similar)

Memory Architecture

CSE 373 SP 18 - KASEY CHAMPION 7

CPU Register

L1 Cache

L2 Cache

RAM

Disk

What is it? Typical
Size Time

The brain of the
computer! 32 bits ≈free

Extra memory to make
accessing it faster 128KB 0.5 ns

Extra memory to make
accessing it faster 2MB 7 ns

Working memory, what
your programs need 8GB 100 ns

Large, longtime storage 1 TB 8,000,000 ns

Memory Architecture
Takeaways:
- the more memory a layer can store, the slower it is (generally)
- accessing the disk is very slow

Computer Design Decisions
-Physics

- Speed of light
- Physical closeness to CPU

-Cost
- “good enough” to achieve speed
- Balance between speed and space

CSE 373 SP 18 - KASEY CHAMPION 8

Locality
How does the OS minimize disk accesses?

Spatial Locality
Computers try to partition memory you are likely to use close by
- Arrays
- Fields

Temporal Locality
Computers assume the memory you have just accessed you will likely access again in the
near future

CSE 373 SP 18 - KASEY CHAMPION 9

Leveraging Spatial Locality
When looking up address in “slow layer”
- bring in more than you need based on what’s near by
- cost of bringing 1 byte vs several bytes is the same
- Data Carpool!

CSE 373 SP 18 - KASEY CHAMPION 10

How memory is used and moves around

CSE 373 SP 19 - KASEY CHAMPION 11

CSE 373 SP 19 - KASEY CHAMPION 12

CSE 373 SP 19 - KASEY CHAMPION 13

CSE 373 SP 19 - KASEY CHAMPION 14

CSE 373 SP 19 - KASEY CHAMPION 15

CSE 373 SP 19 - KASEY CHAMPION 16

CSE 373 SP 19 - KASEY CHAMPION 17

CSE 373 SP 19 - KASEY CHAMPION 18

CSE 373 SP 19 - KASEY CHAMPION 19

CSE 373 SP 19 - KASEY CHAMPION 20

Solution to Mercy’s traveling problem

If we know Mercy is going to keep eating tuna . . . Why not buy a
bunch during a single trip and save them all somewhere closer than the
store?

Let’s get Mercy a refrigerator!

CSE 373 SP 19 - KASEY CHAMPION 21

CSE 373 SP 19 - KASEY CHAMPION 22

CSE 373 SP 19 - KASEY CHAMPION 23

CSE 373 SP 19 - KASEY CHAMPION 24

CSE 373 SP 19 - KASEY CHAMPION 25

RAM

CPU CPU – kind of like the home /
brain of your computer. Pretty
much all computation is done
here and data needs to move
here to do anything significant
with it (math, if checks, normal
statement execution).

Data travels between RAM and
the CPU, but it’s slow

Before

CSE 373 SP 19 - KASEY CHAMPION 26

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

Cache
-Rough definition: a place to store some memory that’s smaller and closer to
the CPU compared to RAM. Because caches are closer to the CPU (where
your data generally needs to go to be computed / modified / acted on)
getting data from cache to CPU is a lot quicker than from RAM to CPU. This
means we love when the data we want to access is conveniently in the cache.

-Generally we always store some data here in hopes that it will be used in the
future and that we save ourselves the distance / time it takes to go to RAM.

- Analogy from earlier: The refrigerator (a cache) in your house to store food
closer to you than the store. Walking to your fridge is much quicker than
walking to the store!

CSE 373 SP 19 - KASEY CHAMPION 27

CSE 373 SP 19 - KASEY CHAMPION 28

RAM

CPU

Cache!
Bring a bunch of data
back when you go all the
way to RAM

Bring a bunch of food back when
you go all the way to the store

After

This is a big
idea!

How is a bunch of memory taken from RAM?

CSE 373 SP 19 - KASEY CHAMPION 29

• Imagine you want to retrieve the 1 at index 4 in
RAM

• Your computer is smart enough to know to grab
some of the surrounding data because computer
designers think that it’s reasonably likely you’ll
want to access that data too.
• (You don’t have to do anything in your code

for this to happen – it happens automatically
every time you access data!)

• To answer the title question, technically the term /
units of transfer is in terms of ‘blocks’.

This is a big idea
(continued)!

How is a bunch of memory taken from RAM?
(continued)

CSE 373 SP 19 - KASEY CHAMPION 30

cache

original data (the 1) we wanted to look up gets passed back to the cpu

CPU

all the data from the
block gets brought to
the cache

How does this pattern of memory grabbing
affect our programs?
- This should have a major impact on programming with arrays. Say we access an index of
an array that is stored in RAM. Because we grab a whole bunch of contiguous memory
even when we just access one index in RAM, we’ll probably be grabbing other nearby parts
of our array and storing that in our cache for quick access later.

Imagine that the below memory is just an entire array of length 13, with some data in it.

CSE 373 SP 19 - KASEY CHAMPION 31

Just by accessing one element we bring the nearby
elements back with us to the cache. In this case, it’s almost
all of the array!

Leveraging Temporal Locality
When looking up address in “slow layer”
Once we load something into RAM or cache, keep it around or a while
- But these layers are smaller
- When do we “evict” memory to make room?

CSE 373 SP 18 - KASEY CHAMPION 32

Moving Memory
Amount of memory moved from disk to RAM
- Called a “block” or “page”
- ≈4kb
- Smallest unit of data on disk

Amount of memory moved from RAM to Cache
- called a “cache line”
- ≈64 bytes

Operating System is the Memory Boss
- controls page and cache line size
- decides when to move data to cache or evict

CSE 373 SP 18 - KASEY CHAMPION 33

Thought Experiment
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}

CSE 373 SP 18 - KASEY CHAMPION 34

public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[j][i];

}
}
return output;

}

Why does sum1 run so much faster than sum2?
sum1 takes advantage of spatial and temporal locality

0 1 2 3 4

0 1 2

‘a’ ‘b’ ‘c’

0 1 2

‘d’ ‘e’ ‘f’

0 1 2

‘g’ ‘h’ ‘i’

0 1 2

‘j’ ‘k’ ‘l’

0 1 2

‘m’ ‘n’ ‘o’

Java and Memory
What happens when you use the
“new” keyword in Java?
- Your program asks the Java Virtual
Machine for more memory from the
“heap”
- Pile of recently used memory

- If necessary the JVM asks Operating
System for more memory
- Hardware can only allocate in units of page
- If you want 100 bytes you get 4kb
- Each page is contiguous

CSE 373 SP 18 - KASEY CHAMPION 35

What happens when you create a new array?
- Program asks JVM for one long, contiguous chunk of

memory

What happens when you create a new object?
- Program asks the JVM for any random place in memory

What happens when you read an array index?
- Program asks JVM for the address, JVM hands off to OS
- OS checks the L1 caches, the L2 caches then RAM then

disk to find it
- If data is found, OS loads it into caches to speed up future

lookups

What happens when we open and read data from
a file?

- Files are always stored on disk, must make a disk access

Array v Linked List
Is iterating over an ArrayList faster than iterating over a LinkedList?

Answer:
LinkedList nodes can be stored in memory, which means the don’t have spatial locality. The
ArrayList is more likely to be stored in contiguous regions of memory, so it should be
quicker to access based on how the OS will load the data into our different memory layers.

CSE 373 SP 18 - KASEY CHAMPION 36

Thought Experiment
Suppose we have an AVL tree of height 50. What is the best case scenario for number of
disk accesses? What is the worst case?

CSE 373 SP 18 - KASEY CHAMPION 37

RAM Disk

Maximizing Disk Access Effort
Instead of each node having 2 children, let it have M children.
- Each node contains a sorted array of children

Pick a size M so that fills an entire page of disk data
Assuming the M-ary search tree is balanced, what is its height?
What is the worst case runtime of get() for this tree?

CSE 373 SP 18 - KASEY CHAMPION 38

logm(n)

log2(m) to pick a child
logm(n) * log2(m) to find node

Maximizing Disk Access Effort
If each child is at a different location in disk memory – expensive!
What if we construct a tree that stores keys together in branch nodes, all the values in leaf
nodes

CSE 373 SP 18 - KASEY CHAMPION 39

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

<- internal nodes

leaf nodes ->

K K K K K

K V

K V

K V

K V

B Trees
Has 3 invariants that define it
1. B-trees must have two different types of nodes: internal nodes and leaf nodes
2. B-trees must have an organized set of keys and pointers at each internal node
3. B-trees must start with a leaf node, then as more nodes are added they must stay at least
half full

CSE 373 SP 18 - KASEY CHAMPION 40

Node Invariant
Internal nodes contain M pointers to children and M-1 sorted keys

A leaf node contains L key-value pairs, sorted by key

CSE 373 SP 18 - KASEY CHAMPION 41

K K K K K

K V

K V

K V

K V

M = 6

L = 3

Order Invariant
For any given key k, all subtrees to the left may only contain keys x that satisfy x < k. All
subtrees to the right may only contain keys x that satisfy k >= x

CSE 373 SP 18 - KASEY CHAMPION 42

3 7 12 21

X < 3 3 <= X < 7 7 <= X < 12 12 <= X < 21 21 <= x

Structure Invariant
If n <= L, the root node is a leaf

CSE 373 SP 18 - KASEY CHAMPION 43

K V

K V

K V

K V

When n > L the root node must be an internal
node containing 2 to M children
All other internal nodes must have M/2 to M
children
All leaf nodes must have L/2 to L children
All nodes must be at least half-full The root is
the only exception, which can have as few as 2
children
- Helps maintain balance
- Requiring more than 2 children prevents degenerate

Linked List trees

B-Trees
Has 3 invariants that define it
1. B-trees must have two different types of nodes: internal nodes and leaf nodes
- An internal node contains M pointers to children and M – 1 sorted keys.
- M must be greater than 2
- Leaf Node contains L key-value pairs, sorted by key.

2. B-trees order invariant
- For any given key k, all subtrees to the left may only contain keys that satisfy x < k
- All subtrees to the right may only contain keys x that satisfy k >= x

3. B-trees structure invariant
- If n<= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children
- All nodes must be at least half-full

CSE 373 SP 18 - KASEY CHAMPION 44

get() in B Trees
get(6)
get(39)

CSE 373 SP 18 - KASEY CHAMPION 45

6 4

8 5

9 6

10 7

12 8

14 9

16 10

17 11

20 12

22 13

24 14

34 18

38 19

39 20

41 21

12 44

27 15

28 16

32 17

6 20 27 34 50

1 1

2 2

3 3

Worst case run time = logm(n)log2(m)
Disk accesses = logm(n) = height of tree

put() in B Trees
Suppose we have an empty B-tree where M = 3 and L = 3. Try inserting 3, 18, 14, 30, 32, 36

CSE 373 SP 18 - KASEY CHAMPION 46

3 1

18

14

2

3

3 1

14

18

3

2
18

3 1

14 3

18 2

30 4

32 5

32

32 5

36 6

Warm Up
What operations would occur in what order if a call of get(24) was called on this b-tree?
What is the M for this tree? What is the L?
If Binary Search is used to find which child to follow from an internal node, what is the
runtime for this get operation?

CSE 373 SP 18 - KASEY CHAMPION 47

6 4

8 5

9 6

10 7

12 8

14 9

16 10

17 11

20 12

22 13

24 14

34 18

38 19

39 20

41 21

12

27 15

28 16

32 17

6 20 27 34

1 1

2 2

3 3

Review: B-Trees
Has 3 invariants that define it
1. B-trees must have two different types of nodes: internal nodes and leaf nodes
- An internal node contains M pointers to children and M – 1 sorted keys.
- M must be greater than 2
- Leaf Node contains L key-value pairs, sorted by key.

2. B-trees order invariant
- For any given key k, all subtrees to the left may only contain keys that satisfy x < k
- All subtrees to the right may only contain keys x that satisfy k >= x

3. B-trees structure invariant
- If n<= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children
- All nodes must be at least half-full

CSE 373 SP 18 - KASEY CHAMPION 48

Put() for B-Trees
Build a new b-tree where M = 3 and L = 3.
Insert (3,1), (18,2), (14,3), (30,4) where (k,v)
When n <= L b-tree root is a leaf node

No space for (30,4) ->split the node
Create two new leafs that each hold ½ the values and create a new internal node

CSE 373 SP 18 - KASEY CHAMPION 49

3 1

18 2

14 3wrong ->

18

3 1

14 3

18 2

30 4

<- use smallest value in larger subset as sign post
2. B-trees order invariant

For any given key k, all subtrees to the
left may only contain keys that satisfy x <
k
All subtrees to the right may only contain
keys x that satisfy k >= x

You try!
Try inserting (32, 5) and (36, 6) into the following tree

CSE 373 SP 18 - KASEY CHAMPION 50

18

3 1

14 3

18 2

30 4

32 5

32 5

36 6

32

Splitting internal nodes
Try inserting (15, 7) and (16, 8) into our existing tree

CSE 373 SP 18 - KASEY CHAMPION 51

18

3 1

14 3

18 2

30 4

32 5

32 5

36 6

32

15 7

15 7

16 8

32

3 1

14 3

18 2

30 4

32 5

36 6

15

15 7

16 8

Make a new internal node!

Make a new internal node!
18

B-tree Run Time
Time to find correct leaf
Time to insert into leaf
Time to split leaf
Time to split leaf’s parent internal node
Number of internal nodes we might have to split

All up worst case runtime:

CSE 373 SP 18 - KASEY CHAMPION 52

Height = logm(n)log2(m) = tree traversal time

Θ(L)

Θ(L)

Θ(M)

Θ(logm(n))

Θ(L + Mlogm(n))

