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Warm Up
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Merge Sort Quick Sort
first element as pivot

Quick Sort
in-place
median of values as pivot



Announcements
Things are tough all over the world right now
- Everyone gets +2 late days (thanks TAs!)
- Extending the late turn in from 3 days after due date to 5 days after due date

P4 Spec Quiz Due today!
- For extra credit
- No late submissions accepted
- P4 due Wednesday June 2nd

Office Hours slight change
- Tas have been instructed to help with ONE step of debugging: identify bug, reproduce bug or resolve bug
- Goal is to move through OH queue faster so you have more questions answered in smaller chunks
- OH Form will be added to OH page and bot

Tech Career Resources
- No BS CS Career Talk recording: https://courses.cs.washington.edu/courses/cse142/21sp/explore.html
- Section 9 Thursday 5/27 Interview Prep
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Quick Sort (v1)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Can be done!

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)
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𝑇 𝑛 = - 1 if 𝑛 ≤ 1

𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = :
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= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half



Can we do better?
How to avoid hitting the worst case?
- It all comes down to the pivot. If the pivot divides each array in half, we get better behavior

Here are four options for finding a pivot. What are the tradeoffs?
-Just take the first element
-Take the median of the full array
-Take the median of the first, last, and middle element
-Pick a random element



Strategies for Choosing a Pivot
Just take the first element

- Very fast!
- But has worst case: for example, sorted lists have Ω 𝑛! behavior

Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case… but the constant factors are awful. No one does quicksort this way.

Take the median of the first, last, and middle element
- Makes pivot slightly more content-aware, at least won’t select very smallest/largest
- Worst case is still Ω(𝑛!), but on real-world data tends to perform well!

Pick a random element
- Get 𝑂(𝑛 log 𝑛) runtime with probability at least 1 − 1/𝑛!

- No simple worst-case input (e.g. sorted, reverse sorted)

Most commonly used



Quick Sort (v2: In-Place) 
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

P IVOT? P IVOT? P IVOT?P IVOT!

Select a pivot

Move pivot out 
of the way

Bring low and high 
pointers together, 
swapping elements 
if needed

Meeting point is 
where pivot 
belongs; swap in. 
Now recurse on 
smaller portions of 
same array!

Divide



Quick Sort (v2: In-Place)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerPart, largerPart = partition(pivot, list)
smallerPart = quickSort(smallerPart)
largerPart = quickSort(largerPart)
return smallerPart + pivot + largerPart

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

𝑇 𝑛 = - 1 if 𝑛 ≤ 1
𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = :
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

= Θ(𝑛!)

= Θ(𝑛 log 𝑛)

0 1 2 3 4 5

0 3 6 9 7 8

choosePivot:
- Use one of the pivot 
selection strategies

partition:
- For in-place Quick Sort, 
series of swaps to build both 

partitions at once
- Tricky part: moving pivot out 
of the way and moving it back!

- Similar to Merge Sort divide 
step: two pointers, only move 

smaller one



Can we do better?
We’d really like to avoid hitting the worst case.

Key to getting a good running time, is always cutting the array (about) in half. 
How do we choose a good pivot?

Here are four options for finding a pivot. What are the tradeoffs?
-Just take the first element
-Take the median of the first, last, and middle element
-Take the median of the full array
-Pick a random element as a pivot 
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Pivots
Just take the first element

- fast to find a pivot
- But (e.g.) nearly sorted lists get Ω 𝑛! behavior overall

Take the median of the first, last, and middle element
- Guaranteed to not have the absolute smallest value.
- On real data, this works quite well…
- But worst case is still Ω(𝑛!)

Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case….but the constant factors are awful. No one does quicksort this way.

Pick a random element as a pivot 
- somewhat slow constant factors
- Get 𝑂(𝑛 log 𝑛) running time with probability at least 1 − 1/𝑛!
- “adversaries” can’t make it more likely that we hit the worst case.
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Median of three is a common 
choice in practice



Sorting: Summary
Best-Case Worst-Case Space Stable

Selection Sort Θ(n2) Θ(n2) Θ(1) No

Insertion Sort Θ(n) Θ(n2) Θ(1) Yes

Heap Sort Θ(n) Θ(nlogn) Θ(n) No

In-Place Heap Sort Θ(n) Θ(nlogn) Θ(1) No

Merge Sort Θ(nlogn) Θ(nlogn) Θ(nlogn)
Θ(n)* optimized

Yes

Quick Sort Θ(nlogn) Θ(n2) Θ(n) No

In-place Quick Sort Θ(nlogn) Θ(n2) Θ(1) No

What does Java do?
• Actually uses a combination of 3 

different sorts:
• If objects: use Merge Sort* 

(stable!)
• If primitives: use Dual Pivot 

Quick Sort
• If “reasonably short” array of 

primitives: use Insertion Sort
• Researchers say 48 elements

Key Takeaway: No single sorting 
algorithm is “the best”!
• Different sorts have different 

properties in different situations
• The “best sort” is one that is well-

suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different



Insertion Sort

STRATEGY 1:
ITERATIVE IMPROVEMENT

STRATEGY 2:
IMPOSE STRUCTURE

STRATEGY 3:
DIVIDE AND CONQUER

Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏) STABLE

IN-PLACE

IN-PLACE

IN-PLACE

IN-PLACE STABLE

𝜽(𝒏)

WORST

BEST

WORST

BEST

WORST

BEST

𝜽(𝒏𝟐)
𝜽(𝒏 𝐥𝐨𝐠𝒏)
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BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏𝟐)

Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.

𝜽(𝒏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE



Insertion Sort

Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST
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Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.
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Can we do better than n log n?
• For comparison sorts, NO. A proven lower bound!

• Intuition: n elements to sort, no faster way to 
find “right place” than log n

• However, niche sorts can do better in specific 
situations!

Many cool niche sorts beyond the scope of 373!
Radix Sort (Wikipedia, VisuAlgo) - Go digit-by-digit in 

integer data. Only 10 digits, so no need to compare!
Counting Sort (Wikipedia)
Bucket Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Radix_sort
https://visualgo.net/en/sorting?slide=15
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/External_sorting


DANCE EDITION

But Don’t Take it From Me…

Insertion Sort: 
https://www.youtube.com/watch?v=ROalU379l3U
Selection Sort: 
https://www.youtube.com/watch?v=Ns4TPTC8wh
w
Heap Sort: 
https://www.youtube.com/watch?v=Xw2D9aJRBY4
Merge Sort: 
https://www.youtube.com/watch?v=XaqR3G_NVo
o
Quick Sort: 
https://www.youtube.com/watch?v=ywWBy6J5gz8

Here are some excellent visualizations for the sorting algorithms we’ve talked about!

Comparing Sorting Algorithms

• Different Types of Input Data: 
https://www.toptal.com/developers/sorting-algorithms

• More Thorough Walkthrough: 
https://visualgo.net/en/sorting?slide=1

Comparing Sorting Algorithms

https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Xw2D9aJRBY4
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.toptal.com/developers/sorting-algorithms
https://visualgo.net/en/sorting?slide=1


Memory & Locality!
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Review: Binary, Bits and Bytes
binary
A base-2 system of representing numbers using only 1s and 0s
- vs decimal, base 10, which has 9 symbols

bit
The smallest unit of computer memory represented as a single binary value either 0 or 1
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Decimal Decimal Break Down Binary Binary Break Down

0 (0 ∗ 10") 0 (0 ∗ 2")

1 (1 ∗ 10") 1 (1 ∗ 2")

10 (1 ∗ 10#) + (0 ∗ 10") 1010 (1 ∗ 2$) + (0 ∗ 2!) + (1 ∗ 2#)
+ (0 ∗ 2")

12 (1 ∗ 10#) + (2 ∗ 10") 1100 (1 ∗ 2$) + (1 ∗ 2!) + (0 ∗ 2#)
+ (0 ∗ 2")

127 1 ∗ 10! + (1 ∗ 10#)
+ (2 ∗ 10")

01111111 (0 ∗ 2%) + (1 ∗ 2&) + (1 ∗ 2')
+ (1 ∗ 2()(1 ∗ 2$) + (1 ∗ 2!)
+ (1 ∗ 2#) + (1 ∗ 2")

byte
The most commonly referred to unit of memory, a 
grouping of 8 bits
Can represent 265 different numbers (28) 
1 Kilobyte = 1 thousand bytes (kb)
1 Megabyte = 1 million bytes (mb)
1 Gigabyte = 1 billion bytes (gb)



Thought experiment
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}
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public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[j][i];

}
}
return output;

}

What do these two methods do?
What is the big-Θ
Θ(n*m)



Incorrect Assumptions
Accessing memory is a quick and constant-time operation

Sometimes accessing memory is cheaper and easier than at other times
Sometimes accessing memory is very slow
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Lies!



RAM (Random-Access Memory)
- RAM is where data gets stored for the programs you run. 
Think of it as the main memory storage location for your 
programs.

- RAM goes by a ton of different names: memory, main 
memory, RAM are all names for this same thing.
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RAM can be represented as a huge array
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=

This is a main 
takeaway

If you’re interested in deeper than this : https://www.youtube.com/watch?v=fpnE6UAfbtU or take some EE classes?

RAM:
- addresses, storing stuff at specific locations
- random access

Arrays
- indices, storing stuff at specific locations
- random access

https://www.youtube.com/watch?v=fpnE6UAfbtU


A rough view of arrays and linked lists
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int[] array = new int[3];
array[0] = 3;
array[1] = 7;
array[2] = 3;

Node front = new Node(3); 
front.next = new Node(7);
front.next.next = new Node(3);

3 7 3

37 3

(drawing singly linked list instead of doubly 
because drawings are hard / the two are 
similar)



Memory Architecture
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CPU Register

L1 Cache

L2 Cache

RAM

Disk

What is it? Typical 
Size Time

The brain of the 
computer! 32 bits ≈free

Extra memory to make 
accessing it faster 128KB 0.5 ns

Extra memory to make 
accessing it faster 2MB 7 ns

Working memory, what 
your programs need 8GB 100 ns

Large, longtime storage 1 TB 8,000,000 ns



Memory Architecture
Takeaways:
- the more memory a layer can store, the slower it is (generally)
- accessing the disk is very slow

Computer Design Decisions
-Physics

- Speed of light
- Physical closeness to CPU

-Cost
- “good enough” to achieve speed
- Balance between speed and space
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Locality
How does the OS minimize disk accesses?

Spatial Locality
Computers try to partition memory you are likely to use close by
- Arrays
- Fields

Temporal Locality
Computers assume the memory you have just accessed you will likely access again in the 
near future
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Leveraging Spatial Locality
When looking up address in “slow layer” 
- bring in more than you need based on what’s near by
- cost of bringing 1 byte vs several bytes is the same
- Data Carpool!
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How memory is used and moves around 
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Solution to Mercy’s traveling problem

If we know Mercy is going to keep eating tuna . .  . Why not buy a 
bunch during a single trip and save them all somewhere closer than the 
store?

Let’s get Mercy a refrigerator!
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RAM

CPU CPU – kind of like the home / 
brain of your computer.  Pretty 
much all computation is done 
here and data needs to move 
here to do anything significant 
with it (math, if checks, normal 
statement execution).

Data travels between RAM and 
the CPU, but it’s slow 

Before
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RAM

CPU

Cache!
Bring a bunch of data 
back when you go all the 
way to RAM

Bring a bunch of food back when 
you go all the way to the store

After



Cache
-Rough definition: a place to store some memory that’s smaller and closer to 
the CPU compared to RAM.  Because caches are closer to the CPU (where 
your data generally needs to go to be computed / modified / acted on) 
getting data from cache to CPU is a lot quicker than from RAM to CPU.  This 
means we love when the data we want to access is conveniently in the cache.

-Generally we always store some data here in hopes that it will be used in the 
future and that we save ourselves the distance / time it takes to go to RAM.

- Analogy from earlier: The refrigerator (a cache) in your house to store food 
closer to you than the store. Walking to your fridge is much quicker than 
walking to the store!
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RAM

CPU

Cache!
Bring a bunch of data 
back when you go all the 
way to RAM

Bring a bunch of food back when 
you go all the way to the store

After

This is a big 
idea! 



How is a bunch of memory taken from RAM?
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• Imagine you want to retrieve the 1 at index 4 in 
RAM

• Your computer is smart enough to know to grab 
some of the surrounding data because computer 
designers think that it’s reasonably likely you’ll 
want to access that data too. 
• (You don’t have to do anything in your code 

for this to happen – it happens automatically 
every time you access data!)

• To answer the title question, technically the term / 
units of transfer is in terms of ‘blocks’.

This is a big idea 
(continued)!



How is a bunch of memory taken from RAM?
(continued)
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cache

original data (the 1) we wanted to look up gets passed back to the cpu

CPU

all the data from the 
block gets brought to 
the cache



How does this pattern of memory grabbing 
affect our programs?
- This should have a major impact on programming with arrays.  Say we access an index of 
an array that is stored in RAM.  Because we grab a whole bunch of contiguous memory 
even when we just access one index in RAM, we’ll probably be grabbing other nearby parts 
of our array and storing that in our cache for quick access later. 

Imagine that the below memory is just an entire array of length 13, with some data in it.  
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Just by accessing one element we bring the nearby 
elements back with us to the cache. In this case, it’s almost 
all of the array!



Leveraging Temporal Locality
When looking up address in “slow layer” 
Once we load something into RAM or cache, keep it around or a while
- But these layers are smaller
- When do we “evict” memory to make room?
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Moving Memory
Amount of memory moved from disk to RAM
- Called a “block” or “page”
- ≈4kb
- Smallest unit of data on disk

Amount of memory moved from RAM to Cache
- called a “cache line”
- ≈64 bytes

Operating System is the Memory Boss
- controls page and cache line size
- decides when to move data to cache or evict
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Thought Experiment
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}
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public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[j][i];

}
}
return output;

}

Why does sum1 run so much faster than sum2?
sum1 takes advantage of spatial and temporal locality

0 1 2 3 4

0 1 2

‘a’ ‘b’ ‘c’

0 1 2

‘d’ ‘e’ ‘f’

0 1 2

‘g’ ‘h’ ‘i’

0 1 2

‘j’ ‘k’ ‘l’

0 1 2

‘m’ ‘n’ ‘o’



Java and Memory
What happens when you use the 
“new” keyword in Java?
- Your program asks the Java Virtual 
Machine for more memory from the 
“heap”
- Pile of recently used memory

- If necessary the JVM asks Operating 
System for more memory
- Hardware can only allocate in units of page
- If you want 100 bytes you get 4kb
- Each page is contiguous
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What happens when you create a new array?
- Program asks JVM for one long, contiguous chunk of 

memory

What happens when you create a new object?
- Program asks the JVM for any random place in memory

What happens when you read an array index?
- Program asks JVM for the address, JVM hands off to OS
- OS checks the L1 caches, the L2 caches then RAM then 

disk to find it
- If data is found, OS loads it into caches to speed up future 

lookups

What happens when we open and read data from 
a file?

- Files are always stored on disk, must make a disk access



Array v Linked List
Is iterating over an ArrayList faster than iterating over a LinkedList?

Answer:
LinkedList nodes can be stored in memory, which means the don’t have spatial locality. The 
ArrayList is more likely to be stored in contiguous regions of memory, so it should be 
quicker to access based on how the OS will load the data into our different memory layers.
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