Lecture 23: Introduction to Sorting II
Warm Up

<table>
<thead>
<tr>
<th>Selection Sort</th>
<th>Insertion Sort</th>
<th>Heap Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst case runtime?</td>
<td>$\Theta(n^2)$</td>
<td>Worst case runtime?</td>
</tr>
<tr>
<td>Best case runtime?</td>
<td>$\Theta(n^2)$</td>
<td>Best case runtime?</td>
</tr>
<tr>
<td>In-practice runtime?</td>
<td>$\Theta(n^2)$</td>
<td>In-practice runtime?</td>
</tr>
<tr>
<td>Stable?</td>
<td>No</td>
<td>Stable?</td>
</tr>
<tr>
<td>In-place?</td>
<td>Yes</td>
<td>In-place?</td>
</tr>
</tbody>
</table>
Heap Sort

1. run Floyd’s buildHeap on your data
2. call removeMin n times

```java
public void heapSort(input) {
    E[] heap = buildHeap(input)
    E[] output = new E[n]
    for (n)
        output[i] = removeMin(heap)
}
```

- **Worst case runtime?** \(\Theta(n \log n) \)
- **Best case runtime?** \(\Theta(n) \)
- **In-practice runtime?** \(\Theta(n \log n) \)
- **Stable?** No
- **In-place?** If we get clever...
In Place Heap Sort

Heap Sorted Items

Current Item

Heap

Sorted Items

percolateDown(22)

Heap

Sorted Items

Heap

Sorted Items

Current Item
In Place Heap Sort

```
public void inPlaceHeapSort(input) {
    buildHeap(input) // alters original array
    for (n : input)
        input[n - i - 1] = removeMin(heap)
}
```

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards ($O(n)$)
- Use a max heap
- Reverse compare function to emulate max heap

Worst case runtime? $\Theta(n \log n)$
Best case runtime? $\Theta(n)$
In-practice runtime? $\Theta(n \log n)$
Stable? No
In-place? Yes
Floyd’s buildHeap algorithm

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index
Floyd’s buildHeap algorithm

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index
 1. percolateDown level 4
 2. percolateDown level 3
Floyd’s buildHeap algorithm

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index
 1. percolateDown level 4
 2. percolateDown level 3
 3. percolateDown level 2

keep percolating down like normal here and swap 5 and 4
Floyd’s buildHeap algorithm

Build a tree with the values: 12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index
 1. percolateDown level 4
 2. percolateDown level 3
 3. percolateDown level 2
 4. percolateDown level 1
Floyd’s buildHeap algorithm

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index
 1. percolateDown level 4
 2. percolateDown level 3
 3. percolateDown level 2
 4. percolateDown level 1
Is It Really Faster?

Assume the tree is **perfect**
- the proof for complete trees just gives a different constant factor.

`percolateDown()` doesn’t take $\log n$ steps each time!

Half the nodes of the tree are leaves
- Leaves run `percolate down` in constant time

1/4 of the nodes have at most 1 level to travel
1/8 the nodes have at most 2 levels to travel
etc...

$$\text{work}(n) \approx \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \cdots + 1 \cdot (\log n)$$
Closed form Floyd’s buildHeap

\[
n/2 \cdot 1 + n/4 \cdot 2 + n/8 \cdot 3 + \cdots + 1 \cdot (\log n)
\]

factor out n

\[
\text{work}(n) \approx n \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \cdots + \frac{\log n}{n}\right) \text{find a pattern } \rightarrow \text{powers of 2} \quad \text{work}(n) \approx n \left(\frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{\log n}{2^{\log n}}\right) \quad \text{Summation!}
\]

\[
\text{work}(n) \approx n \sum_{i=1}^{2} \frac{i}{2^i} \quad ? = \text{upper limit should give last term}
\]

We don’t have a summation for this! Let’s make it look more like a summation we do know.

Infinite geometric series

\[
\text{work}(n) \leq n \sum_{i=1}^{\log n} \left(\frac{3}{2}\right)^i \quad \text{if } -1 < x < 1 \text{ then } \sum_{i=0}^{\infty} x^i = \frac{1}{1 - x} = x \quad \text{work}(n) \approx n \sum_{i=1}^{\log n} \frac{i}{2^i} \leq n \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = n \times 4
\]

Floyd’s buildHeap runs in O(n) time!
Announcements

Things are tough all over the world right now
- Everyone gets +2 late days (thanks TAs!)
- Extending the late turn in from 3 days after due date to 5 days after due date

P4 Spec Quiz Due today!
- For extra credit
- No late submissions accepted
- P4 due Wednesday June 2nd

Office Hours slight change
- Tas have been instructed to help with ONE step of debugging: identify bug, reproduce bug or resolve bug
- Goal is to move through OH queue faster so you have more questions answered in smaller chunks
- OH Form will be added to OH page and bot

Tech Career Resources
- No BS CS Career Talk Thursday (tomorrow) 5-6 (cal invite on OH calendar)
- Section 9 Thursday 5/27 Interview Prep
Sorting Strategy 3: Divide and Conquer

General recipe:

1. **Divide** your work into smaller pieces recursively

2. **Conquer** the recursive subproblems
 - In many algorithms, conquering a subproblem requires no extra work beyond recursively dividing and combining it!

3. **Combine** the results of your recursive calls

```python
def divideAndConquer(input):
    if small enough to solve:
        conquer, solve, return results
    else:
        divide input into a smaller pieces
        recurse on smaller pieces
        combine results and return
```
Merge Sort

Simply divide in half each time:

- Divide

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>91</td>
<td>22</td>
<td>55</td>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>
```

No extra conquer work needed!

- Conquer

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>91</td>
<td>22</td>
<td>55</td>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>
```

The actual sorting happens here!

- Combine

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
```

https://www.youtube.com/watch?v=XaqR3G_NVoo
Merge Sort: Divide Step

Recursive Case:
Split the array in half and recurse on both halves.

Base Case:
- When array hits size 1, stop dividing. In Merge Sort, no additional work to conquer: everything gets sorted in combine step!

Sort the pieces through the magic of recursion!
Combining two *sorted* arrays:
1. Initialize *pointers* to start of both arrays
2. Repeat until all elements are added:
 1. Add whichever is smaller to the result array
 2. Move that pointer forward one spot

Works because we only move the smaller pointer – then "reconsider" the larger against a new value, and because the arrays are sorted we never have to backtrack!
Merge Sort

mergeSort(list) {
 if (list.length == 1):
 return list
 else:
 smallerHalf = mergeSort(new [0, ..., mid])
 largerHalf = mergeSort(new [mid + 1, ...])
 return merge(smallerHalf, largerHalf)
}

Worst case runtime? \(T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases} \)

Best case runtime? Same \(= \Theta(n \log n) \)

In Practice runtime? Same

Stable? Yes

In-place? No

Don’t forget your old friends, the 3 recursive patterns!
Divide and Conquer

There’s more than one way to divide!

Mergesort:
- Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the right.

Quicksort:
- Split into two arrays.
- Roughly, elements that are “small” and elements that are “large”
- How to define “small” and “large”? Choose a “pivot” value in the array that will partition the two arrays!
Quick Sort (v1)

Choose a “pivot” element, partition array relative to it!

Again, no extra conquer step needed!

Simply concatenate the now-sorted arrays!

https://www.youtube.com/watch?v=ywWBy6J5gz8
Quick Sort (v1): Divide Step

Recursive Case:
• Choose a “pivot” element
• Partition: linear scan through array, add smaller elements to one array and larger elements to another
• Recursively partition

Base Case:
• When array hits size 1, stop dividing.
Quick Sort (v1): Combine Step

Combine

Simply concatenate the arrays that were created earlier! Partition step already left them in order 😊
Quick Sort (v1)

```
quickSort(list) {
    if (list.length == 1):
        return list
    else:
        pivot = choosePivot(list)
        smallerHalf = quickSort(getSmaller(pivot, list))
        largerHalf = quickSort(getBigger(pivot, list))
        return smallerHalf + pivot + largerHalf
}
```

Worst case runtime? \(T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
T(n-1) + n & \text{otherwise}
\end{cases} \) = \(\Theta(n^2) \)

Best case runtime? \(T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases} \) = \(\Theta(n \log n) \)

In-practice runtime? Just trust me: \(\Theta(n \log n) \)

(absurd amount of math to get here)

Stable? No

In-place? Can be done!

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half
Can we do better?

How to avoid hitting the worst case?
- It all comes down to the pivot. If the pivot divides each array in half, we get better behavior

Here are four options for finding a pivot. What are the tradeoffs?
- Just take the first element
- Take the median of the full array
- Take the median of the first, last, and middle element
- Pick a random element
Strategies for Choosing a Pivot

Just take the first element
- Very fast!
- But has worst case: for example, sorted lists have $\Omega(n^2)$ behavior

Take the median of the full array
- Can actually find the median in $O(n)$ time (google QuickSelect). It’s complicated.
- $O(n \log n)$ even in the worst case... but the constant factors are awful. No one does quicksort this way.

Take the median of the first, last, and middle element
- Makes pivot slightly more content-aware, at least won’t select very smallest/largest
- Worst case is still $\Omega(n^2)$, but on real-world data tends to perform well!

Pick a random element
- Get $O(n \log n)$ runtime with probability at least $1 - 1/n^2$
- No simple worst-case input (e.g. sorted, reverse sorted)
Quick Sort (v2: In-Place)

Select a pivot

Move pivot out of the way

Bring low and high pointers together, swapping elements if needed

Meeting point is where pivot belongs; swap in.

Now recurse on smaller portions of same array!
Quick Sort (v2: In-Place)

```javascript
quickSort(list) {
    if (list.length == 1):
        return list
    else:
        pivot = choosePivot(list)
        smallerPart, largerPart = partition(pivot, list)
        smallerPart = quickSort(smallerPart)
        largerPart = quickSort(largerPart)
        return smallerPart + pivot + largerPart
}
```

- **choosePivot:** Use one of the pivot selection strategies
- **partition:** For in-place Quick Sort, series of swaps to build both partitions at once
 - Tricky part: moving pivot out of the way and moving it back!
 - Similar to Merge Sort divide step: two pointers, only move smaller one

Worst case runtime?

\[
T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
T(n-1) + n & \text{otherwise}
\end{cases} = \Theta(n^2)
\]

Best case runtime?

\[
T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T\left(\frac{n}{2}\right) + n & \text{otherwise}
\end{cases} = \Theta(n \log n)
\]

In-practice runtime?

Just trust me: \(\Theta(n \log n)\)

(absurd amount of math to get here)

Stable?

No

In-place?

Yes
Can we do better?

We’d really like to avoid hitting the worst case.

Key to getting a good running time, is always cutting the array (about) in half.

How do we choose a good pivot?

Here are four options for finding a pivot. What are the tradeoffs?
- Just take the first element
- Take the median of the first, last, and middle element
- Take the median of the full array
- Pick a random element as a pivot
Pivots

Just take the first element
- fast to find a pivot
- But (e.g.) nearly sorted lists get $\Omega(n^2)$ behavior overall

Take the median of the first, last, and middle element
- Guaranteed to not have the absolute smallest value.
- On real data, this works quite well...
- But worst case is still $\Omega(n^2)$

Take the median of the full array
- Can actually find the median in $O(n)$ time (google QuickSelect). It’s complicated.
- $O(n \log n)$ even in the worst case....but the constant factors are awful. No one does quicksort this way.

Pick a random element as a pivot
- somewhat slow constant factors
- Get $O(n \log n)$ running time with probability at least $1 - 1/n^2$
- “adversaries” can’t make it more likely that we hit the worst case.

Median of three is a common choice in practice
Sorting: Summary

<table>
<thead>
<tr>
<th></th>
<th>Best-Case</th>
<th>Worst-Case</th>
<th>Space</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>Θ(n²)</td>
<td>Θ(n²)</td>
<td>Θ(1)</td>
<td>No</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>Θ(n)</td>
<td>Θ(n²)</td>
<td>Θ(1)</td>
<td>Yes</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>Θ(n)</td>
<td>Θ(nlogn)</td>
<td>Θ(n)</td>
<td>No</td>
</tr>
<tr>
<td>In-Place Heap Sort</td>
<td>Θ(n)</td>
<td>Θ(nlogn)</td>
<td>Θ(1)</td>
<td>No</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>Θ(nlogn)</td>
<td>Θ(nlogn)</td>
<td>Θ(nlogn) Θ(n)* optimized</td>
<td>Yes</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Θ(nlogn)</td>
<td>Θ(n²)</td>
<td>Θ(n)</td>
<td>No</td>
</tr>
<tr>
<td>In-place Quick Sort</td>
<td>Θ(nlogn)</td>
<td>Θ(n²)</td>
<td>Θ(1)</td>
<td>No</td>
</tr>
</tbody>
</table>

What does Java do?
- Actually uses a combination of 3 different sorts:
 - If objects: use Merge Sort* (stable!)
 - If primitives: use Dual Pivot Quick Sort
 - If “reasonably short” array of primitives: use Insertion Sort
 - Researchers say 48 elements

Key Takeaway: No single sorting algorithm is “the best”!
- Different sorts have different properties in different situations
- The “best sort” is one that is well-suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different
STRATEGY 1: ITERATIVE IMPROVEMENT

Insertion Sort
- **WORST**: $\Theta(n^2)$
- **BEST**: $\Theta(n)$

Simple, stable, low-overhead, great if already sorted.

Selection Sort
- **WORST**: $\Theta(n^2)$
- **BEST**: $\Theta(n^2)$

Minimizes array writes, otherwise never preferred.

STRATEGY 2: IMPOSE STRUCTURE

Heap Sort
- **WORST**: $\Theta(n \log n)$
- **BEST**: $\Theta(n)$

Always good runtimes

TRATEGY 3: DIVIDE AND CONQUER

Merge Sort
- **WORST**: $\Theta(n \log n)$
- **BEST**: $\Theta(n \log n)$

Stable, very reliable! In-place variant is slower.

Quick Sort
- **WORST**: $\Theta(n^2)$
- **BEST**: $\Theta(n \log n)$

Fastest in practice (constant factors), bad worst case.

Minimizes array writes, otherwise never preferred.
Can we do better than $n \log n$?
- For comparison sorts, **NO**. A proven lower bound!
 - Intuition: n elements to sort, no faster way to find “right place” than $\log n$
- However, niche sorts can do better in specific situations!

Many cool niche sorts beyond the scope of 373!
- **Radix Sort** ([Wikipedia, VisuAlgo]) - Go digit-by-digit in integer data. Only 10 digits, so no need to compare!
- **Counting Sort** ([Wikipedia])
- **Bucket Sort** ([Wikipedia])
- **External Sorting Algorithms** ([Wikipedia]) - For big data™
But Don’t Take it From Me…

Here are some excellent visualizations for the sorting algorithms we’ve talked about!

Comparing Sorting Algorithms

- Different Types of Input Data: https://www.toptal.com/developers/sorting-algorithms
- More Thorough Walkthrough: https://visualgo.net/en/sorting?slide=1

Comparing Sorting Algorithms

- Insertion Sort: https://www.youtube.com/watch?v=ROalU379I3U
- Selection Sort: https://www.youtube.com/watch?v=Ns4TPTC8whw
- Heap Sort: https://www.youtube.com/watch?v=Xw2D9aJRBYY4
- Merge Sort: https://www.youtube.com/watch?v=XaqR3G_NVoo
- Quick Sort: https://www.youtube.com/watch?v=ywWBqy6Jqz8