
Lecture 23: Introduction
to Sorting II

CSE 373: Data Structures and
Algorithms

1

Warm Up

2CSE 373 20 SP – CHAMPION & CHUN

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Yes

Θ(𝑛 log 𝑛)

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛)

Yes

Yes

Θ(𝑛2)

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛2)

No

Yes

Θ(𝑛2)

Selection Sort Insertion Sort Heap Sort

Heap Sort
1. run Floyd’s buildHeap on your data
2. call removeMin n times

3

public void heapSort(input) {
E[] heap = buildHeap(input)
E[] output = new E[n]
for (n)

output[i] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Θ(𝑛 log 𝑛)

https://www.youtube.com/watch?v=Xw2D9aJRBY4

CSE 373 18 SP – KASEY CHAMPION

If we get clever…

https://www.youtube.com/watch?v=Xw2D9aJRBY4

In Place Heap Sort

4

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

CSE 373 18 SP – KASEY CHAMPION

In Place Heap Sort

5

public void inPlaceHeapSort(input) {
buildHeap(input) // alters original array
for (n : input)

input[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Yes

Θ(𝑛 log 𝑛)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards (𝑂(𝑛))
- Use a max heap
- Reverse compare function to emulate max heap

CSE 373 18 SP – KASEY CHAMPION

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 6

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 7

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION8

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down
like normal here and swap 5 and 4

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION9

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY
CHAMPION10

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array
2. percolateDown(parent) starting at last index

1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11

Is It Really Faster?
Assume the tree is perfect
- the proof for complete trees just gives a different constant factor.

percolateDown() doesn’t take log 𝑛 steps each time!
Half the nodes of the tree are leaves

-Leaves run percolate down in constant time
1/4 of the nodes have at most 1 level to travel
1/8 the nodes have at most 2 levels to travel
etc…

work(n) ≈ !
"
⋅ 1 + !

#
⋅ 2 + !

$
⋅ 3 + ⋯+ 1 ⋅ (log 𝑛)

CSE 373 SP 18 - KASEY CHAMPION 11

Closed form Floyd’s buildHeap
𝑛/2⋅ 1 +𝑛/4⋅ 2 +𝑛/8⋅ 3 +⋯+1⋅(log 𝑛)

factor out n

work(n) ≈𝑛 !
"
+ "

#
+ $

%
+⋯+ &'()

)

CSE 373 SP 18 - KASEY CHAMPION 12

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛7
*+!

?
𝑖
2*

𝑤𝑜𝑟𝑘 𝑛 ≤ 𝑛7
*+!

&'(- 3
2

*

2*
𝑖𝑓 − 1 < 𝑥 < 1 𝑡ℎ𝑒𝑛7

*+.

/

𝑥* =
1

1 − 𝑥 = 𝑥

Infinite geometric series

𝑤𝑜𝑟𝑘 𝑛 ≈ 𝑛 7
*+!

&'(-
𝑖
2*
≤ 𝑛7

*+.

/
3
4

*

= 𝑛 ∗ 4

find a pattern -> powers of 2 work(n) ≈ 𝑛 !
"!
+ "

""
+ $

"#
+⋯+ &'()

"$%& '

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

Announcements
Things are tough all over the world right now
- Everyone gets +2 late days (thanks TAs!)
- Extending the late turn in from 3 days after due date to 5 days after due date

P4 Spec Quiz Due today!
- For extra credit
- No late submissions accepted
- P4 due Wednesday June 2nd

Office Hours slight change
- Tas have been instructed to help with ONE step of debugging: identify bug, reproduce bug or resolve bug
- Goal is to move through OH queue faster so you have more questions answered in smaller chunks
- OH Form will be added to OH page and bot

Tech Career Resources
- No BS CS Career Talk Thursday (tomorrow) 5-6 (cal invite on OH calendar)
- Section 9 Thursday 5/27 Interview Prep

13CSE 373 21 SP – CHAMPION

Sorting Strategy 3: Divide and Conquer
General recipe:
1. Divide your work into smaller pieces recursively

2. Conquer the recursive subproblems
- In many algorithms, conquering a subproblem requires no extra work

beyond recursively dividing and combining it!

3. Combine the results of your recursive calls

divideAndConquer(input) {
if (small enough to solve):

conquer, solve, return results
else:

divide input into a smaller pieces
recurse on smaller pieces
combine results and return

}

Merge Sort
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22
0 1 2 3

55 1 7 6

0 1 2 3

2 8 22 91

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

8

0

2

0

91

0

22

0

55

0

1

0 1 2 3

1 6 7 55

0

7

0

6

…

…

Conquer

Simply divide in
half each time

No extra
conquer work
needed!

The actual
sorting happens
here!

https://www.youtube.com/watch?v=XaqR3G_NVoo

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort: Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

8 2 91 22
0 1 2 3

55 1 7 6

0 1

8 2

0 1

91 22

0 1

55 1
0 1

7 6

0

8

0

2

0

91

0

22

0

55

0

1

0

7

0

6

Recursive Case: split
the array in half and
recurse on both
halves

Base Case: when
array hits size 1,
stop dividing. In
Merge Sort, no
additional work to
conquer: everything
gets sorted in
combine step!

Sort the pieces through the magic of recursionmagic

Merge Sort: Combine Step

0 1 2 3

2 8 22 91

0 1 2 3

1 6 7 55

Combine

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combining two sorted arrays:
1. Initialize pointers to start of both arrays
2. Repeat until all elements are added:

1. Add whichever is smaller to the result array
2. Move that pointer forward one spot

Works because we only move the smaller pointer – then ”reconsider” the larger against a new value, and
because the arrays are sorted we never have to backtrack!

Merge Sort
mergeSort(list) {

if (list.length == 1):
return list

else:
smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

Worst case runtime?

Best case runtime?

In Practice runtime?

Stable?

In-place?

Yes

No

=Θ(𝑛 log 𝑛)

Same

Same

0 1 2 3

55 1 7 6

0 1

55 1
0 1

7 6

0

55

0

1

0

7

0

6

0 1 2 3

1 6 7 55

0 1

1 55
0 1

6 7

n

2 log n

𝑇 𝑛 = D
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

2 Constant size Input
Don’t forget your old friends,
the 3 recursive patterns!

Divide and Conquer
There’s more than one way to divide!
Mergesort:
- Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the right.

Quicksort:
- Split into two arrays.
- Roughly, elements that are “small” and elements that are “large”
- How to define “small” and “large”? Choose a “pivot” value in the array that will partition the two arrays!

0

8

Quick Sort (v1)
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6
0 1 2

91 22 55

0 1 2 3

1 2 6 7

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

Combine

0

1

0

2

0

6

0

7

0

8

0

22

0 1 2 3

1 6 7 55

0

55

0

91

…

…

Conquer

Choose a “pivot”
element, partition
array relative to it!

Again, no extra
conquer step
needed!

Simply concatenate
the now-sorted
arrays!

P IVOT

0

8

https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ywWBy6J5gz8

0

8

Quick Sort (v1): Divide Step
0 1 2 3 4 5 6 7

8 2 91 22 55 1 7 6

Divide

0 1 2 3

2 1 7 6
0 1 2

91 22 55

Recursive Case:
• Choose a “pivot”

element
• Partition: linear scan

through array, add
smaller elements to
one array and larger
elements to another

• Recursively partition

P IVOT

Base Case:
• When array hits size

1, stop dividing.

0 1

7 6

0

1

0

2

P IVOT P IVOT

0 1

22 55

0

91

P IVOT P IVOT

0

6

0

7

0

22

0

55

0

8

Quick Sort (v1): Combine Step
Combine

Simply concatenate the
arrays that were
created earlier!
Partition step already
left them in order J

0

1

0

2

0

91

0

6

0

7

0

22

0

55

0 1

6 7

0 1

22 55

0 1 2 3 4 5 6 7

1 2 6 7 8 22 55 91

0 1 2 3

1 2 6 7

0 1 2

22 55 91

Quick Sort (v1)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerHalf = quickSort(getSmaller(pivot, list))
largerHalf = quickSort(getBigger(pivot, list))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Can be done!

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

0 1 2 3

2 1 7 6

0 1

7 6

0

1

0

2

P IVOT

P IVOT

0

6

0

7
𝑇 𝑛 = M 1 if 𝑛 ≤ 1

𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = D
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

0 1 2 3

1 2 6 7

0 1

6 7

= Θ(𝑛")

= Θ(𝑛 log 𝑛)

Worst case: Pivot only chops off one value
Best case: Pivot divides each array in half

Can we do better?
How to avoid hitting the worst case?
- It all comes down to the pivot. If the pivot divides each array in half, we get better behavior

Here are four options for finding a pivot. What are the tradeoffs?
-Just take the first element
-Take the median of the full array
-Take the median of the first, last, and middle element
-Pick a random element

Strategies for Choosing a Pivot
Just take the first element

- Very fast!
- But has worst case: for example, sorted lists have Ω 𝑛" behavior

Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case… but the constant factors are awful. No one does quicksort this way.

Take the median of the first, last, and middle element
- Makes pivot slightly more content-aware, at least won’t select very smallest/largest
- Worst case is still Ω(𝑛"), but on real-world data tends to perform well!

Pick a random element
- Get 𝑂(𝑛 log 𝑛) runtime with probability at least 1 − 1/𝑛"

- No simple worst-case input (e.g. sorted, reverse sorted)

Most commonly used

Quick Sort (v2: In-Place)
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

6 1 4 9 0 3 5 2 7 8

Low
X < 6

High
X >= 6

0 1 2 3 4 5 6 7 8 9

6 1 4 2 0 3 5 9 7 8

Low
X < 6

High
X >= 60 1 2 3 4 5 6 7 8 9

5 1 4 2 0 3 6 9 7 8

P IVOT? P IVOT? P IVOT?P IVOT!

Select a pivot

Move pivot out
of the way

Bring low and high
pointers together,
swapping elements
if needed

Meeting point is
where pivot
belongs; swap in.
Now recurse on
smaller portions of
same array!

Divide

Quick Sort (v2: In-Place)
quickSort(list) {

if (list.length == 1):
return list

else:
pivot = choosePivot(list)
smallerPart, largerPart = partition(pivot, list)
smallerPart = quickSort(smallerPart)
largerPart = quickSort(largerPart)
return smallerPart + pivot + largerPart

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

Just trust me: Θ(𝑛 log 𝑛)
(absurd amount of math to get here)

𝑇 𝑛 = M 1 if 𝑛 ≤ 1
𝑇 𝑛 − 1 + 𝑛 otherwise

𝑇 𝑛 = D
1 if 𝑛 ≤ 1

2𝑇
𝑛
2 + 𝑛 otherwise

= Θ(𝑛")

= Θ(𝑛 log 𝑛)

0 1 2 3 4 5

0 3 6 9 7 8

choosePivot:
- Use one of the pivot
selection strategies

partition:
- For in-place Quick Sort,
series of swaps to build both

partitions at once
- Tricky part: moving pivot out
of the way and moving it back!

- Similar to Merge Sort divide
step: two pointers, only move

smaller one

Can we do better?
We’d really like to avoid hitting the worst case.

Key to getting a good running time, is always cutting the array (about) in half.
How do we choose a good pivot?

Here are four options for finding a pivot. What are the tradeoffs?
-Just take the first element
-Take the median of the first, last, and middle element
-Take the median of the full array
-Pick a random element as a pivot

CSE 373 19 SU - ROBBIE WEBER 28

Pivots
Just take the first element

- fast to find a pivot
- But (e.g.) nearly sorted lists get Ω 𝑛" behavior overall

Take the median of the first, last, and middle element
- Guaranteed to not have the absolute smallest value.
- On real data, this works quite well…
- But worst case is still Ω(𝑛")

Take the median of the full array
- Can actually find the median in 𝑂(𝑛) time (google QuickSelect). It’s complicated.
- 𝑂(𝑛 𝑙𝑜𝑔 𝑛) even in the worst case….but the constant factors are awful. No one does quicksort this way.

Pick a random element as a pivot
- somewhat slow constant factors
- Get 𝑂(𝑛 log 𝑛) running time with probability at least 1 − 1/𝑛"
- “adversaries” can’t make it more likely that we hit the worst case.

CSE 373 19 SU - ROBBIE WEBER 29

Median of three is a common
choice in practice

Sorting: Summary
Best-Case Worst-Case Space Stable

Selection Sort Θ(n2) Θ(n2) Θ(1) No

Insertion Sort Θ(n) Θ(n2) Θ(1) Yes

Heap Sort Θ(n) Θ(nlogn) Θ(n) No

In-Place Heap Sort Θ(n) Θ(nlogn) Θ(1) No

Merge Sort Θ(nlogn) Θ(nlogn) Θ(nlogn)
Θ(n)* optimized

Yes

Quick Sort Θ(nlogn) Θ(n2) Θ(n) No

In-place Quick Sort Θ(nlogn) Θ(n2) Θ(1) No

What does Java do?
• Actually uses a combination of 3

different sorts:
• If objects: use Merge Sort*

(stable!)
• If primitives: use Dual Pivot

Quick Sort
• If “reasonably short” array of

primitives: use Insertion Sort
• Researchers say 48 elements

Key Takeaway: No single sorting
algorithm is “the best”!
• Different sorts have different

properties in different situations
• The “best sort” is one that is well-

suited to your data

* They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different

Insertion Sort

STRATEGY 1:
ITERATIVE IMPROVEMENT

STRATEGY 2:
IMPOSE STRUCTURE

STRATEGY 3:
DIVIDE AND CONQUER

Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏) STABLE

IN-PLACE

IN-PLACE

IN-PLACE

IN-PLACE STABLE

𝜽(𝒏)

WORST

BEST

WORST

BEST

WORST

BEST

𝜽(𝒏𝟐)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏𝟐)

Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.

𝜽(𝒏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

Insertion Sort

Selection Sort

Heap Sort

Merge Sort

Quick Sort

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏) STABLE

IN-PLACE

IN-PLACE

IN-PLACE

IN-PLACE STABLE

𝜽(𝒏)

WORST

BEST

WORST

BEST

WORST

BEST

𝜽(𝒏𝟐)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

WORST

BEST

𝜽(𝒏 𝐥𝐨𝐠𝒏)
𝜽(𝒏 𝐥𝐨𝐠𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏)

𝜽(𝒏𝟐)
𝜽(𝒏𝟐)

Minimizes array writes, otherwise never preferred.

Simple, stable, low-overhead, great if already sorted.

Always good runtimes

Stable, very reliable! In-place variant is slower.

Fastest in practice (constant factors), bad worst case.

𝜽(𝒏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

𝜽(𝟏)SPACE

Can we do better than n log n?
• For comparison sorts, NO. A proven lower bound!

• Intuition: n elements to sort, no faster way to
find “right place” than log n

• However, niche sorts can do better in specific
situations!

Many cool niche sorts beyond the scope of 373!
Radix Sort (Wikipedia, VisuAlgo) - Go digit-by-digit in

integer data. Only 10 digits, so no need to compare!
Counting Sort (Wikipedia)
Bucket Sort (Wikipedia)
External Sorting Algorithms (Wikipedia) - For big data™

https://en.wikipedia.org/wiki/Radix_sort
https://visualgo.net/en/sorting?slide=15
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/External_sorting

DANCE EDITION

But Don’t Take it From Me…

Insertion Sort:
https://www.youtube.com/watch?v=ROalU379l3U
Selection Sort:
https://www.youtube.com/watch?v=Ns4TPTC8wh
w
Heap Sort:
https://www.youtube.com/watch?v=Xw2D9aJRBY4
Merge Sort:
https://www.youtube.com/watch?v=XaqR3G_NVo
o
Quick Sort:
https://www.youtube.com/watch?v=ywWBy6J5gz8

Here are some excellent visualizations for the sorting algorithms we’ve talked about!

Comparing Sorting Algorithms

• Different Types of Input Data:
https://www.toptal.com/developers/sorting-algorithms

• More Thorough Walkthrough:
https://visualgo.net/en/sorting?slide=1

Comparing Sorting Algorithms

https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Xw2D9aJRBY4
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.toptal.com/developers/sorting-algorithms
https://visualgo.net/en/sorting?slide=1

