
Lecture 22: Introduction
to Sorting

CSE 373: Data Structures and
Algorithms

1

Administrivia
Assignment Reminders
- Project 4 due Wednesday June 2nd
- Exercise 4 due Friday May 21st

- Grades coming this week

2CSE 373 21 SP – CHAMPION

Sorting

CSE 373 19 WI – KASEY CHAMPION 3

Where are we?
This course is “data structures and algorithms”
Data structures
- Organize our data so we can process it effectively

Algorithms
- Actually process our data!

We’re going to start focusing on algorithms

We’ll start with sorting
- A very common, generally-useful preprocessing step
- And a convenient way to discuss a few different ideas for designing algorithms.

CSE 373 19 SU - ROBBIE WEBER 4

Types of Sorts
Comparison Sorts

Compare two elements at a time
General sort, works for most types of
elements

What does this mean? compareTo() works
for your elements
- And for our running times to be correct, compareTo

must run in 𝑂(1) time.

5

Niche Sorts aka “linear sorts”

Leverages specific properties about
the items in the list to achieve faster
runtimes
niche sorts typically run O(n) time

For example, we’re sorting small
integers, or short strings.

In this class we’ll focus on comparison
sorts

CSE 373 18 SP – KASEY CHAMPION

Sorting: Definitions (Knuth’s TAOCP)

An ordering relation < for keys a, b, and c has the following
properties:
- Law of Trichotomy: Exactly one of a < b, a = b, b < a is true
- Law of Transitivity: If a < b, and b < c, then a < c

A sort is a permutation (re-arrangement) of a sequence of
elements that puts the keys into non-decreasing order, relative to
the ordering relation
- x1 ≤ x2 ≤ x3≤ ...≤ xN

int temperature

class Movie {
String name;
int year;

}

• Built-in, simple ordering
relation

• More complex: Whenever we
sort, we also must decide
what ordering relation to use
for that application
• Sort by name?
• Sort by year?
• Some combination of

both?

https://www.amazon.com/Art-Computer-Programming-Sorting-Searching/dp/0201896850

Sorting: Stability
A sort is stable if the relative order of equivalent keys is maintained after sorting

Anita
2010

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita
2016

Anita
2010

Anita
2016

Basia
2018

Caris
2019

Duska
2020

Duska
2015

Anita Basia Anita Duska Esteban Duska Caris

Anita Anita Basia Caris Duska Duska Esteban

• Stability and Equivalency only matter for complex types
• i.e. when there is more data than just the key

INPUT

Anita
2016

Anita
2010

Basia
2018

Caris
2019

Duska
2015

Duska
2020

Stable sort using name as key Unstable sort using name as key

Sorting: Performance Definitions
Runtime performance is sometimes called the time complexity
- Example: Dijkstra’s has time complexity O(E log V).

Extra memory usage is sometimes called the space complexity
- Dijkstra’s has space complexity Θ(V)

- Priority Queue, distTo and edgeTo maps

- The input graph takes up space Θ(V+E), but we don’t count this as part of the space complexity since the
graph itself already exists and is an input to Dijkstra’s

Sorting Goals
In Place sort

A sorting algorithm is in-place if it allocates 𝑂(1) extra memory

Modifies input array (can’t copy data into new array)

Useful to minimize memory usage

9

Stable sort

A sorting algorithm is stable if any equal items remain in the same relative
order before and after the sort

Why do we care?
- “data exploration” Client code will want to sort by multiple features and

“break ties” with secondary features

[(8, “fox”), (9, “dog”), (4, “wolf”), (8, “cow”)]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)]

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]

Stable

Unstable

Speed

Of course, we want our algorithms to
be fast.

Sorting is so common, that we often
start caring about constant factors.

CSE 373 18 SP – KASEY CHAMPION

SO MANY SORTS
Quicksort, Merge sort, in-place merge sort, heap sort,
insertion sort, intro sort, selection sort, timsort, cubesort,
shell sort, bubble sort, binary tree sort, cycle sort, library sort,
patience sorting, smoothsort, strand sort, tournament sort,
cocktail sort, comb sort, gnome sort, block sort,
stackoverflow sort, odd-even sort, pigeonhole sort, bucket
sort, counting sort, radix sort, spreadsort, burstsort, flashsort,
postman sort, bead sort, simple pancake sort, spaghetti sort,
sorting network, bitonic sort, bogosort, stooge sort, insertion
sort, slow sort, rainbow sort…

10CSE 373 18 SP – KASEY CHAMPION

Goals
Algorithm Design (like writing invariants) is more art than science.
We’ll do a little bit of designing our own algorithms
- Take CSE 417 (usually runs in Winter) for more

Mostly we’ll understand how existing algorithms work
Understand their pros and cons
- Design decisions!

Practice how to apply those algorithms to solve problems

CSE 373 19 SU - ROBBIE WEBER 11

Algorithm Design Patterns
Algorithms don’t just come out of thin air.
There are common patterns we use to design new algorithms.
Many of them are applicable to sorting (we’ll see more patterns later in the quarter)
Invariants/Iterative improvement
- Step-by-step make one more part of the input your desired output.

Using data structures
- Speed up our existing ideas

Divide and conquer
- Split your input
- Solve each part (recursively)
- Combine solved parts into a single

CSE 373 19 SU - ROBBIE WEBER 12

Principle 1
Invariants/Iterative improvement
- Step-by-step make one more part of the input your desired output.

We’ll write iterative algorithms to satisfy the following invariant:
After 𝑘 iterations of the loop, the first 𝑘 elements of the array will be sorted.

CSE 373 19 SU - ROBBIE WEBER 13

Selection Sort
0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

14

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 6 7 9 10 14 18 11 15

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

15

public void selectionSort(collection) {
for (entire list)

int newIndex = findNextMin(currentItem);
swap(newIndex, currentItem);

}
public int findNextMin(currentItem) {

min = currentItem
for (unsorted list)

if (item < min)
min = currentItem

return min
}
public int swap(newIndex, currentItem) {

temp = currentItem
currentItem = newIndex
newIndex = currentItem

}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛2)

No

Yes

Θ(𝑛2)

0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted ItemsCurrent Item

CSE 373 18 SP – KASEY CHAMPION

Selection Sort Stability

16CSE 373 20 SP – CHAMPION & CHUN

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

✓

0 1 2 3 4 5 6

2 3 4 5b 5a 6 8

…

*Swapping non-adjacent items can result in instability of sorting algorithms

Insertion Sort
0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 1 4 10 2 8

17

Sorted Items Unsorted ItemsCurrent Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

Insertion Sort

18

0 1 2 3 4 5 6 7 8 9

2 3 5 6 7 8 4 10 2 8

Sorted Items Unsorted ItemsCurrent Item

public void insertionSort(collection) {
for (entire list)

if(currentItem is smaller than largestSorted)
int newIndex = findSpot(currentItem);
shift(newIndex, currentItem);

}
public int findSpot(currentItem) {

for (sorted list going backwards)
if (spot found) return

}
public void shift(newIndex, currentItem) {

for (i = currentItem > newIndex)
item[i+1] = item[i]

item[newIndex] = currentItem
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛2)

Θ(𝑛)

Yes

Yes

Θ(𝑛2)

CSE 373 18 SP – KASEY CHAMPION

Insertion Sort Stability

19CSE 373 20 SP – CHAMPION & CHUN

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

✓

0 1 2 3 4 5 6

5a 3 4 5b 2 6 8

0 1 2 3 4 5 6

3 5a 4 5b 2 6 8

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

✓

0 1 2 3 4 5 6

3 4 5a 5b 2 6 8

Insertion sort is stable
- All swaps happen between

adjacent items to get current
item into correct relative position
within sorted portion of array

- Duplicates will always be
compared against one another in
their original orientation, thus it
can be maintained with proper if
logic

Principle 2
Selection sort:
After 𝑘 iterations of the loop, the 𝑘 smallest elements of the array are (sorted) in indices
0,… , 𝑘 − 1

Runs in Θ 𝑛! time no matter what.

Using data structures
-Speed up our existing ideas
If only we had a data structure that was good at getting the smallest item remaining
in our dataset…
-We do!

CSE 373 19 SU - ROBBIE WEBER 20

Heap Sort
1. run Floyd’s buildHeap on your data
2. call removeMin n times

21

public void heapSort(input) {
E[] heap = buildHeap(input)
E[] output = new E[n]
for (n)

output[i] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Θ(𝑛 log 𝑛)

https://www.youtube.com/watch?v=Xw2D9aJRBY4

CSE 373 18 SP – KASEY CHAMPION

If we get clever…

https://www.youtube.com/watch?v=Xw2D9aJRBY4

In Place Heap Sort

22

0 1 2 3 4 5 6 7 8 9

1 4 2 14 15 18 16 17 20 22

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

22 4 2 14 15 18 16 17 20 1

Heap Sorted Items
Current Item

0 1 2 3 4 5 6 7 8 9

2 4 16 14 15 18 22 17 20 1

Heap Sorted Items
Current Item

percolateDown(22)

CSE 373 18 SP – KASEY CHAMPION

In Place Heap Sort

23

public void inPlaceHeapSort(input) {
buildHeap(input) // alters original array
for (n : input)

input[n – i - 1] = removeMin(heap)
}

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

Θ(𝑛 log 𝑛)

Θ(𝑛)

No

Yes

Θ(𝑛 log 𝑛)

0 1 2 3 4 5 6 7 8 9

15 17 16 18 20 22 14 4 2 1

Heap Sorted Items
Current Item

Complication: final array is reversed! Lots of fixes:
- Run reverse afterwards (𝑂(𝑛))
- Use a max heap
- Reverse compare function to emulate max heap

CSE 373 18 SP – KASEY CHAMPION

