
Lecture 21: Toposort and
Reductions

CSE 373: Data Structures and
Algorithms

CSE 373 21 SP – CHAMPION 1

Warm Up

CSE 373 SP 18 - KASEY CHAMPION 2

1

6

3

weight = 1

4

2

105 7

0

98

11

15

13

weight = 8

14

12

1716

18

weight = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -1 1 2 2 2 1 6 7 7 6 -1 11 12 12 11 15 15 17

Store (weight * -1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -10 1 2 2 2 1 6 7 7 6 -8 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32

Fill in the array with the correct values representing this Disjoint Set forest
Use the indices that correspond with the values

Using Arrays for Up-Trees
Since every node can have at most one parent,
what if we use an array to store the parent
relationships?
Proposal: each node corresponds to an index,
where we store the index of the parent (or –1 for
roots). Use the root index as the representative
ID!
Just like with heaps, tree picture still conceptually
correct, but exists in our minds!

Aileen (2)

Santino

Paul (4)

Joyce (0)

KenSam

Alex

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Using Arrays: Find
Initial jump to element still done with
extra Map
But traversing up the tree can be done
purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen (2)

Santino

Paul (4)

Joyce (0)

KenSam

Alex

Alex

Aileen

Sam
…

find(A):
index = jump to A node’s index
while array[index] > 0:
index = array[index]

path compression
return index

1

2

find(Alex)

1

2

= 0

• Can still do path compression by setting all
indices along the way to the root index!

0

3

3

Using Arrays: Union
For WeightedQuickUnion, we need to store
the number of nodes in each tree (the
weight)
Instead of just storing -1 to indicate a root,
we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen (2)

Santino

Joyce (0)

KenSam

Alex

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

weight 4
weight 2

union(Ken, Santino)

Paul (4)

weight 1

Using Arrays: Union
For WeightedQuickUnion, we need to store
the number of nodes in each tree (the
weight)
Instead of just storing -1 to indicate a root,
we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

-6 0

Aileen (2)

Santino

Joyce (0)

KenSam

Alex

weight 6

Paul (4)

weight 1

Aileen

union(Ken, Santino)

Practice

CSE 373 SP 18 - KASEY CHAMPION 7

3

0

weight = 1

4

111

5

2

13

12

weight = 8

109

1415 8

weight = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

weight = 2

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 -6 3 -1 -2 6 12 13 13 0 13 -8 12 12 12

union(2, 16)

Practice

CSE 373 SP 18 - KASEY CHAMPION 8

3

0

weight = 1

4

111

5

2

13

12

weight = 8

109

1415 8

weight = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

weight = 2

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 3 13 3 -1 -2 6 12 13 13 0 13 -8 12 12 13

union(2, 16)
findSet(2) with path compression
findSet(16) with path compression
union(3,13) by weight

Using Arrays for WQU+PC
Same asymptotic runtime as using tree nodes, but check out all these other benefits:
- More compact in memory
- Better spatial locality, leading to better constant factors from cache usage
- Simplify the implementation!

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression ArrayWQU+PC

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)

Implementing Dijkstra’s

Review Dijkstra’s Algorithm: Key Properties

Once a vertex is marked known, its
shortest path is known
- Can reconstruct path by following back-

pointers (in edgeTo map)

While a vertex is not known,
another shorter path might be
found
- We call this update relaxing the distance

because it only ever shortens the
current best path

Going through closest vertices first
lets us confidently say no shorter
path will be found once known
- Because not possible to find a shorter

path that uses a farther vertex we’ll
consider later

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

Review Why Does Dijkstra’s Work?

X

KNOWN

8??

3

1

A

1

5

6??

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a path

through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A first

Similar “First Try Phenomenon” to BFS

How can we be sure we won’t find a shorter
path to X later?
- Key Intuition: Dijkstra’s works because:

- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is
always the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the
correct shortest pathIN

VA
RI

A
N

T

Review Why Does Dijkstra’s Work?

Similar “First Try Phenomenon” to BFS

How can we be sure we won’t find a shorter
path to X later?
- Key Intuition: Dijkstra’s works because:

- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is
always the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the
correct shortest pathIN

VA
RI

A
N

T

X

KNOWN

7??

3

1

A

1

5

6

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a path

through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A first

Implementing Dijkstra’s
How do we implement “let u be the closest unknown vertex”?

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(u, newDist)
edgeTo.put(u, v)

• Would sure be
convenient to store
vertices in a structure
that…
- Gives them each a

distance “priority” value
- Makes it fast to grab the

one with the smallest
distance

- Lets us update that
distance as we discover
new, better paths

MIN PRIORITY QUEUE ADT

Implementing Dijkstra’s: Pseudocode
Use a MinPriorityQueue to
keep track of the perimeter
- Don’t need to track entire graph
- Don’t need separate “known” set –

implicit in PQ (we’ll never try to
update a “known” vertex)

This pseudocode is much
closer to what you’ll
implement in P4
- However, still some details for you

to figure out!
- e.g. how to initialize distTo with all

nodes mapped to ∞
- Spec will describe some

optimizations for you to make J

dijkstraShortestPath(G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; perimeter.add

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Why can’t we simplify further?
• We don’t know if |V| or |E| is

going to be larger, so we don’t
know which term will
dominate.

• Sometimes we assume |E| is
larger than |V|, so |E|log|V|
dominates. But not always
true!

Topological Sort

Topological Sort
A topological sort of a directed graph G is
an ordering of the nodes, where for every edge in the
graph, the origin appears before the destination in the
ordering

Intuition: a “dependency graph”
- An edge (u, v) means u must happen before v
- A topological sort of a dependency graph gives an ordering that

respects dependencies

Applications:
- Graduating
- Compiling multiple Java files
- Multi-job Workflows

A

B

C

A before C

B before C

A before B

A B C

Topological Sort:

With original edges for reference:

A B C

Input:

Can We Always Topo Sort a Graph?
Can you topologically sort this graph?

What’s the difference between this graph and our first graph?

A graph has a topological ordering if it is a DAG
- But a DAG can have multiple orderings

CSE 143

CSE 373

CSE 417

🤔Where do I start? Where do I end?🤔

MATH 126

CSE 142
CSE 143

CSE 373

CSE 374

CSE 417

No 😭

DIRECTED ACYCLIC
GRAPH

• A directed graph
without any cycles

• Edges may or may
not be weighted

Problem 1: Ordering Dependencies
Today’s (first) problem: Given a bunch of courses with prerequisites, find an order to take
the courses in.

CSE 373 SP 18 - KASEY CHAMPION 21

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Problem 1: Ordering Dependencies
Given a directed graph G, where we have an edge from u to v if u must happen before v.
We can only do things one at a time, can we find an order that respects dependencies?

CSE 373 19 SP - KASEY CHAMPION 22

Given: a directed graph G
Find: an ordering of the vertices so all edges go from left to right (all
the dependency arrows are satisfied and the vertices can be
processed left to right with no problems) .

Topological Sort (aka Topological Ordering)

Ordering a DAG
Does this graph have a topological ordering? If so find one.

CSE 373 19 WI - KASEY CHAMPION 23

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the ordering.
More generally, if the only incoming edges are from vertices already in the ordering, it’s safe to
add.

0 1

2

1

1

A C B D E

0

10

0

0

Topological Ordering
A course prerequisite chart and a possible topological ordering.

CSE 373 19 SP - KASEY CHAMPION 24

Math 126

CSE 142

CSE 143

CSE 373

CSE 374

CSE 417

Math 126 CSE 142 CSE 143 CSE 373 CSE 374 CSE 417

Reductions

Reductions
A reduction is a problem-solving strategy that involves
using an algorithm for problem Q to solve a different
problem P
- Rather than modifying the algorithm for Q, we modify the

inputs/outputs to make them compatible with Q!
- “P reduces to Q”

1. Convert input for P into input for Q

2. Solve using algorithm for Q

3. Convert output from Q into output from P

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM
Q

PROBLEM
P

Reductions
Example: I want to get a note to my friend in Chicago,
but walking all the way there is a difficult problem to
solve L
- Instead, reduce the “get a note to Chicago” problem to the “mail a

letter” problem!

1. Place note inside of envelope

2. Mail using US Postal Service

3. Take note out of envelope

Q INPUT

Q OUTPUT

Mail a
letter

Get a note
to Chicago

Chicago

Chicago

Seattle

Seattle

0 1 3 4 72 5 6👻 0 1 3 4 72 5 6👻0 1 3 4 72 5 6

1

2

3

4

5

6

7

0

How To Perform Topo Sort?
If we add a phantom “start” vertex pointing to other
starts, we could use BFS!

👻

BFS

Sweet sweet victory 😎

Reduce topo sort to BFS by
modifying graph, running BFS,
then modifying output back

Performing Topo Sort

Checking for Duplicates
Problem: We want to determine whether an array contains duplicate elements.

Initial idea: Compare every element to every other element!
- Runtime: 𝜃(𝑛!)

Could we do better?

containsDuplicates(array) {
for (int i = 0; i < array.length; i++):

for (int j = i; j < array.length; j++):
if (array[i] == array[j]):

return true
return false

}

0 1 2 3 4

2 4 8 3 8

Goal of a Reduction

0 1 2 3 4

2 4 8 3 8

Goal: Reduce the problem of “Contains Duplicates?” to
another problem we have an algorithm for.

Try to identify each of the following:
1. How will you convert the “Contains Duplicates?” input?
2. What algorithm will you apply?
3. How will you convert the algorithm’s output?

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM
Q

PROBLEM
P

Array

Array

Sorted
Array

Boolean

SortingContains
Duplicates?

One Solution: Reduce “Contains Duplicates?” to the problem
of sorting an array
• We know several algorithms that solve this problem

quickly!

• Totally okay to do work in input/output conversion! Even
with this pass, runtime is 𝜃 𝑛 log 𝑛 + 𝑛 , so just 𝜃 𝑛 log 𝑛 .
Reduction helped us avoid quadratic runtime!

1. Simply pass array input to “Sorting”
2. Use Heap Sort, Merge Sort, or Quick Sort to sort
3. Scan through sorted array: check for duplicates

now next to each other, a 𝜃 𝑛 operation!

One Solution: Sorting!

Graph Modeling Review

Recap: Graph Modeling

SCENARIO
&

QUESTION TO
ANSWER

ANSWER!

MODEL AS A GRAPH RUN ALGORITHM

• Choose vertices
• Choose edges
• Directed/Undirected
• Weighted/Unweighted
• Cyclic/Acyclic

…

• Just visit every node?
• BFS or DFS

• s-t Connectivity?
• BFS or DFS

• Unweighted shortest path?
• BFS

• Weighted shortest path?
• Dijkstra’s

• Minimum Spanning Tree?
• Prim’s or Kruskal’s

Often need to refine
original model as you
work through details of
algorithm

Many ways to model
any scenario with a
graph, but question
motivates which data
is important

Graph Modeling Activity
Note Passing - Part I
Imagine you are an American High School student. You have a
very important note to pass to your crush, but the two of you
do not share a class so you need to rely on a chain of friends
to pass the note along for you. A note can only be passed from
one student to another when they share a class, meaning when
two students have the same teacher during the same class
period.

Unfortunately, the school administration is not as romantic as
you, and passing notes is against the rules. If a teacher sees a
note, they will take it and destroy it. Figure out if there is a
sequence of handoffs to enable you to get your note to your
crush.

How could you model this situation as a graph?

Period 1 Period 2 Period 3 Period 4

You Smith Patel Lee Brown

Anika Smith Lee Martinez Brown

Bao Brown Patel Martinez Smith

Carla Martinez Jones Brown Smith

Dan Lee Lee Brown Patel

Crush Martinez Brown Smith Patel

Possible Design
Vertices
- Students
- Fields: Name, have note

Edges
- Classes shared by students
- Not directed
- Could be left without weights
- Fields: vertex 1, vertex 2, teacher, period

You

Anika

Carla

Bao

Dan
Crush

Smith, 1

Martinez, 1

Patel, 2

Lee, 2

M
ar

tin
ez

, 3

Br
ow

n,
 3

Smith
, 4

Patel, 4

You

A

B

C

D

Crush

A B

B DYou

A CYou

D CrushB

C CrushA

C D

Adjacency List

Algorithm

BFS or DFS to see if you and your Crush are connected

More Design
Note Passing - Part II
Now that you know there exists a way to get your note to your crush, we can work on picking the best hand
off path possible.

Thought Experiments:
1. What if you want to optimize for time to get your crush the note as early in the day as possible?

- How can we use our knowledge of which period students share to calculate for time knowing that
period 1 is earliest in the day and period 4 is later in the day?

- How can we account for the possibility that it might take more than a single school day to deliver
the note?

2. What if you want to optimize for rick avoidance to make sure your note only gets passed in classes least
likely for it to get intercepted?

- Some teachers are better at intercepting notes than others. The more notes a teacher has intercepted,
the more likely it is they will take yours and it will never get to your crush. If we knew how many notes
each teacher has intercepted how might we incorporate that into our graph to find the least risky
route?

Optimize for Time

You

Anika

Carla

Bao

Dan
Crush

1

12

2
3

34

4

1. Add the period number to each edge as its weight
2. Run Dijkstra’s from You to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 2 You 5

Carla 6 Dan 3

Dan 3 Anika 2

Crush 7 Carla 4*

*The path found wraps around to a new school day because the path
moves from a later period to an earlier one
- We can change our algorithm to check for wrap arounds and try other
routes

“Distance” will represent the sum of which periods the note is passed in, because smaller period values are
earlier in the day the smaller the sum the earlier the note gets there except in the case of a “wrap around”

Optimize for Risk

You

Anika

Carla

Bao

Dan
Crush

1

32

4
3

51

4

1. Add the number of
letters intercepted by
the teacher to each edge
as its weight

2. Run Dijkstra’s from You
to Crush

Vertex Distance Predecessor Process Order

You 0 -- 0

Anika 1 You 1

Bao 4 Anika 2

Carla 5 Bao 3

Dan 10 Carla 5

Crush 8 Carla 4

Teacher Notes
Intercepted

Smith 1

Martinez 3

Lee 4

Brown 5

Patel 2

“Distance” will represent the sum of notes intercepted across the
teachers in your passing route. The smaller the sum of notes the
“safer” the path.

Seam Carving

Content-Aware Image Resizing

Seam carving: A distortion-free technique for resizing an image by removing “unimportant
seams”

Seam carving for content-aware image resizing (Avidan, Shamir/ACM); Broadway Tower (Newton2, Yummifruitbat/Wikimedia)

Original Photo Horizontally-Scaled
(castle and person

are distorted)

Seam-Carved
(castle and person are undistorted;

“unimportant” sky removed instead)

41

Demo: https://www.youtube.com/watch?v=vIFCV2spKtg

https://www.youtube.com/watch?v=vIFCV2spKtg

Seam Carving Reduces to Dijkstra’s!
1. Transform the input so that it can be solved by

the standard algorithm
- Formulate the image as a graph

- Vertices: pixel in the image
- Edges: connects a pixel to its 3 downward

neighbors
- Edge Weights: the “energy” (visual difference)

between adjacent pixels

2. Run the standard algorithm as-is on the
transformed input

- Run Dijkstra’s to find the shortest path (sum of
weights) from top row to bottom row

3. Transform the output of the algorithm to solve
the original problem

- Interpret the path as a removable “seam” of
unimportant pixels

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

1.5

1.0

1.6

58.2

120.9

greater pixel difference = higher weight!

An Incomplete Reduction
Complication:
-Dijkstra’s starts with a single vertex S
and ends with a single vertex T

-This problem specifies sets of vertices for
the start and end

Question to think about: how would
you transform this graph into
something Dijkstra’s knows how to
operate on?

Shortest Paths (Robert Sedgewick, Kevin Wayne/Princeton)

S

T

In Conclusion
Topo Sort is a widely applicable “sorting” algorithm
Reductions are an essential tool in your CS toolbox -- you’re
probably already doing them without putting a name to it

Many more reductions than we can cover!
- Shortest Path in DAG with Negative Edges reduces to Topological Sort!

(Link)
- 2-Color Graph Coloring reduces to 2-SAT (Link)
- …
- Staying on top of the end of the quarter in this course reduces to starting

early on P4 and EX4/5

Q INPUT

P INPUT

Q OUTPUT

P OUTPUT

PROBLEM
Q

PROBLEM
P

https://www.ics.uci.edu/~eppstein/161/960208.html
https://blog.asarkar.com/assets/docs/algorithms-curated/Solving%202-List%20Coloring%20-%20Gil.pdf

Appendix

