
Lecture 19: Disjoint Sets CSE 373: Data Structures and
Algorithms

CSE 373 2` SP – CHAMPION 1

Practice
Given the following disjoint-set what would be the result of the following calls on union if
we add the “union-by-weight” optimization. Draw the forest at each stage with
corresponding ranks for each tree.

CSE 373 SP 21 - CHAMPION
2

6

4

5

0 3

1

2 8

10

12

9 11

7

13

union(2, 13)

union(4, 12)

union(2, 8)

Practice
Given the following disjoint-set what would be the result of the following calls on union if
we add the “union-by-weight” optimization. Draw the forest at each stage with
corresponding ranks for each tree.

CSE 373 SP 21 - CHAMPION
3

6

4

5

0 3

1

2 8

10

12

9 11

7

13

union(2, 13)

Practice
Given the following disjoint-set what would be the result of the following calls on union if
we add the “union-by-weight” optimization. Draw the forest at each stage with
corresponding ranks for each tree.

CSE 373 SP 21 - CHAMPION
4

6

4

5

0 3

1

2

8

10

12

9 11

7

13

union(2, 13)

union(4, 12)

Practice
Given the following disjoint-set what would be the result of the following calls on union if
we add the “union-by-weight” optimization. Draw the forest at each stage with
corresponding ranks for each tree.

CSE 373 SP 21 - CHAMPION
5

6

4

5

0 3

1

2
8

10

12

9 11

7

13

union(2, 13)

union(4, 12)

union(2, 8)

Practice
Given the following disjoint-set what would be the result of the following calls on union if
we add the “union-by-weight” optimization. Draw the forest at each stage with
corresponding ranks for each tree.

CSE 373 SP 21 - CHAMPION
6

8

10

12

9 11

union(2, 13)

union(4, 12)

union(2, 8)

6

4

5

0 3

1 2

7

13

Does this improve the worst case runtimes?

findSet is more likely to be O(log(n)) than O(n)

Midpoint survey
Thank you all so much for filling out the lecture and section midpoint surveys! We
appreciate the feedback and are working on incorporating it :)

Announcements
P3 due Today
P4 comes out today due in 3 weeks on Wednesday June 2nd
- last project!
- ~2 weeks of work
- extra credit spec quiz on gradescope!

E3 came out on Friday – due this Friday May 14th
- two more exercises coming

Upcoming meme competition
Reminders:
- Tons of extra practice on section hand outs
- section slides and videos are also available
- always always feel free to reach out to Tas J

New ADT

CSE 373 SP 18 - KASEY CHAMPION 9

Set ADT

create(x) - creates a new set with a single
member, x

Count of Elements

state

behavior

Set of elements
- Elements must be unique!
- No required order

add(x) - adds x into set if it is unique,
otherwise add is ignored
remove(x) – removes x from set
size() – returns current number of
elements in set

Disjoint-Set ADT

makeSet(x) – creates a new set within the disjoint set where the only
member is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing element x, returns
representative of that set
union(x, y) – looks up set containing x and set containing y, combines
two sets into one. Picks new representative for resulting set

D

B

C

A
D

C

F

B

A

G
H

Implementation

CSE 373 SP 18 - KASEY CHAMPION 10

TreeDisjointSet<E>

makeSet(x)-create a new
tree of size 1 and add to
our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with
x and moves up tree to find
root

union(x, y)-append tree
with y as a child of tree
with x

Disjoint-Set ADT

makeSet(x) – creates a new set within
the disjoint set where the only member
is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique

across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing
element x, returns representative of
that set

union(x, y) – looks up set containing x
and set containing y, combines two sets
into one. Picks new representative for
resulting set

Dictionary<NodeValues,
NodeLocations> nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior
SetNode overallRoot

add(x)

remove(x, y)
getRep()-returns data of
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode>
children

Review QuickFind vs. QuickUnion

Joyce, Sam,
Ken, Alex

Aileen,
Santino

Paul

DISJOINT SETS ADT

QuickFind QuickUnion

map from value to representative
ID

Aileen

Joyce

Santino

Sam

Ken

1

2

2

2

1

Alex

Paul

2

3

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

trees of values with representative
ID at each root

(Baseline) QuickFind QuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1)

find(value) Θ(𝑛) Θ(1) Θ(𝑛)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(1)

Could also use one element from
each set (e.g. the root) as its
representative: only uniqueness
matters

Review QuickUnion: Why Use Both Roots?
Example: result of union(Ken, Santino) on these Disjoint
Sets given three possible implementations:

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

union(A, B):
rootB = find(B)
set A to point to rootB

union(A, B):
rootA = find(A)
set rootA to point to B

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Correct: Everything in Ken’s
set now connected to
everything in Santino’s set!

Incorrect: Ken and Joyce were
connected before; the union
operation shouldn’t remove
connections.

Inefficient: Technically correct, but
increases height of the up-tree so
makes

Review WeightedQuickUnion
Goal: Always pick the smaller tree to go
under the larger tree
Implementation: Store the number of nodes
(or “weight”) of each tree in the root
- Constant-time lookup instead of having to traverse

the entire tree to count

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what happens?

B

A C D

Perfect! Best runtime we can get.

Review WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

N H

1 0

Review WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1

N H

1 0

2 1

Review WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1

2

3

N H

1 0

2 1

4 ?

Review WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1 2

3

N H

1 0

2 1

4 2

Review WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?

Review WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1 2

3

N H

1 0

2 1

4 2

8 34

5 6

7

Review WeightedQuickUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13 14

15

• Consider the worst case where the tree height grows as fast as
possible
• Worst case tree height is Θ(log N)

Review Why Weights Instead of Heights?
We used the number of items in a tree to decide upon the root

Why not use the height of the tree?
- HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))
- It’s easier to track weights than heights, even though WeightedQuickUnion can lead to some suboptimal

structures like this one:

1 2

0

4

6

53 8

9

7+ 1 2

0

4 653

8

9

7

Review WeightedQuickUnion Runtime

This is pretty good! But there’s one final optimization we can make: path compression

(Baseline) QuickFind QuickUnion WeightedQuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛)

Aileen

Joyce

Santino

Sam

Ken

1

2

2

2

1

B

A

C

D
0

1 2

3

4

5 6

7

Thus far, the modifications we’ve studied are designed to preserve invariants
- E.g. Performing rotations to preserve the AVL invariant
- We rely on those invariants always being true so every call is fast

Path compression is entirely different: we are modifying the tree structure to
improve future performance
- Not adhering to a specific invariant
- The first call may be slow, but will optimize so future calls can be fast

Modifying Data Structures for Future Gains

Path Compression: Idea
This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just constant time work to point to root

too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13 14

15

Path Compression: Idea
This is the worst-case topology if we use WeightedQuickUnion

Idea: When we do find(15), move all visited nodes under the root
- Additional cost is insignificant (we already have to visit those nodes, just constant time work to point to

root too)

0

1 2

3

4

5 6

7

8

9 10

11

12

13

14 15

• Perform Path Compression on every find(), so future calls to find()
are faster!

Path Compression: Details and Runtime
Run path compression on every find()!
- Including the find()s that are invoked as part of a union()

Understanding the performance of M>1 operations requires amortized analysis
- Effectively averaging out rare events over many common ones
- Typically used for “In-Practice” case

- E.g. when we assume an array doesn’t resize “in practice”, we can do that because the rare resizing calls are amortized
over many faster calls

- In 373 we don’t go in-depth on amortized analysis

0

1 2 3 4

5

6

7

8

9

10 11 12

13

14 15

Path Compression: Runtime
M find()s on WeightedQuickUnion requires takes Θ(M log N)

… but M find()s on WeightedQuickUnionWithPathCompression takes O(M
log*N)!
- log*n is the “iterated log”: the number of times you need to apply log to n before it’s <= 1
- Note: log* is a loose bound

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Path Compression: Runtime
Path compression results in find()s and union()s that are very very close to (amortized)
constant time
- log* is less than 5 for any realistic input
- If M find()s/union()s on N nodes is O(M log*N)

and log*N ≈ 5, then find()/union()s amortizes
to O(1)! 🤯

N log* N

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the
known universe is 2256ish

WQU + Path Compression Runtime

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path
Compression

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)

In-Practice Runtimes:

And if log* n <= 5 for any reasonable input…
- We’ve just witnessed an incredible feat of data structure engineering: every

operation is constant!?*
- *Caveat: amortized constant, in the “in-practice” case; still logarithmic in the

worst case!

Disjoint Sets Implementation

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path
Compression

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛)

In-Practice Runtimes:

Aileen

Joyce

Santino

Sam

Ken

1

2

2

2

1

B

A

C

D
0

1 2

3

4

5 6

7

0

1 23 45

Kruskal’s Runtime

find and union are log|V| in worst case, but amortized constant “in practice”
Either way, dominated by time to sort the edges L
- For an MST to exist, E can’t be smaller than V, so assume it dominates
- Note: some people write |E|log|V|, which is the same (within a constant factor)

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

total Θ 𝑉 iterations

Θ |𝑉|

Θ V log |𝑉|

Θ 𝐸 iterations

Θ 𝐸 log |𝐸|

Θ log |𝑉|

Θ log |𝑉|

Θ E log |𝑉|Θ E log |𝐸|

Using Arrays for Up-Trees
Since every node can have at most one parent,
what if we use an array to store the parent
relationships?
Proposal: each node corresponds to an index,
where we store the index of the parent (or –1 for
roots). Use the root index as the representative
ID!
Just like with heaps, tree picture still conceptually
correct, but exists in our minds!

Aileen (2)

Santino

Paul (4)

Joyce (0)

KenSam

Alex

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Using Arrays: Find
Initial jump to element still done with
extra Map
But traversing up the tree can be done
purely within the array!

0 1 2 3 4 5 6

-1 0 -1 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen (2)

Santino

Paul (4)

Joyce (0)

KenSam

Alex

Alex

Aileen

Sam
…

find(A):
index = jump to A node’s index
while array[index] > 0:
index = array[index]

path compression
return index

1

2

find(Alex)

1

2

= 0

• Can still do path compression by setting all
indices along the way to the root index!

0

3

3

Using Arrays: Union
For WeightedQuickUnion, we need to store
the number of nodes in each tree (the
weight)
Instead of just storing -1 to indicate a root,
we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

Aileen (2)

Santino

Joyce (0)

KenSam

Alex

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

weight 4
weight 2

union(Ken, Santino)

Paul (4)

weight 1

Using Arrays: Union
For WeightedQuickUnion, we need to store
the number of nodes in each tree (the
weight)
Instead of just storing -1 to indicate a root,
we can store -1 * weight!

0 1 2 3 4 5 6

-4 0 -2 6 -1 2 0

Joyce Sam Aileen Alex Paul Santino Ken

union(A, B):
rootA = find(A)
rootB = find(B)
use -1 * array[rootA] and -1 *

array[rootB] to determine weights
put lighter root under heavier root

-6 0

Aileen (2)

Santino

Joyce (0)

KenSam

Alex

weight 6

Paul (4)

weight 1

Aileen

union(Ken, Santino)

Array Implementation

CSE 373 SP 18 - KASEY CHAMPION 36

1

6

3

rank = 0

4

2

105 7

0

98

11

15

13

rank = 3

14

12

1716

18

rank = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -1 1 2 2 2 1 6 7 7 6 -1 11 12 12 11 15 15 17

Store (rank * -1) - 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -4 1 2 2 2 1 6 7 7 6 -4 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32

Practice

CSE 373 SP 18 - KASEY CHAMPION 37

3

0

rank = 0

4

111

5

2

13

12

rank = 2

109

1415 8

rank = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

rank = 1

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 -3 3 -1 -2 6 12 13 13 0 13 -3 12 12 12

Using Arrays for WQU+PC
Same asymptotic runtime as using tree nodes, but check out all these other benefits:
- More compact in memory
- Better spatial locality, leading to better constant factors from cache usage
- Simplify the implementation!

(Baseline) QuickFind QuickUnion WeightedQuickUnion WQU + Path Compression ArrayWQU+PC

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)
union(x, y)
assuming root args Θ(𝑛) Θ(𝑛) Θ(1) Θ(1) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛) 𝑂(log∗ 𝑛) 𝑂(log∗ 𝑛)

Appendix

