
Lecture 19: Disjoint Sets CSE 373: Data Structures and
Algorithms

CSE 373 2` SP – CHAMPION 1

Warmup

CSE 373 SP 18 - KASEY CHAMPION 2

KruskalMST(Graph G)
initialize each vertex to be an independent

component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
update u and v to be in the same component

}
}

Run Kruskal’s algorithm on the following graph to find the MST (minimum spanning tree) of the graph below.
Recall the definition of a minimum spanning tree: a minimum-weight set of edges such that you can get from
any vertex of the graph to any other on only those edges. The set of these edges form a valid tree in the graph.
Below is the provided pseudocode for Kruksal’s algorithm to choose all the edges.

PollEv.com/373lecture

Announcements
P3 due Wednesday May 12th

P4 comes out Wednesday- due in 3 weeks on Wednesday June 2nd

- last project!

E3 came out on Friday – due this Friday May 14th

- two more exercises coming

Minimum Spanning Trees

4CSE 373 20 SP – CHAMPION & CHUN

Review Minimum Spanning Trees (MSTs)
A Minimum Spanning Tree for a graph is a set of that graph’s edges that connect all of that
graph’s vertices (spanning) while minimizing the total weight of the set (minimum)
- Note: does NOT necessarily minimize the path from each vertex to every other vertex
- Any tree with V vertices will have V-1 edges
- A separate entity from the graph itself! More of an “annotation” applied to the graph, just like a Shortest Paths

Tree (SPT)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Minimum Spanning Tree

Review Why do MST Algorithms Work?
Two useful properties for MST edges. We can think about them from either perspective:
- Cycle Property: The heaviest edge along a cycle is NEVER part of an MST.
- Cut Property: Split the vertices of the graph into any two sets A and B. The lightest edge between A and B is

ALWAYS part of an MST. (Prim’s thinks this way)

Whenever you add an edge to a tree you create exactly one cycle. Removing any edge
from that cycle gives another tree!
This observation, combined with the cycle and cut properties form the basis of all of the
greedy algorithms for MSTs.
- greedy algorithm: chooses best known option at each point and commits, rather than waiting for a global

view of the graph before deciding

Review Adapting Dijkstra’s: Prim’s Algorithm
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0
PriorityQueue<V> perimeter; perimeter.add(start);

while (!perimeter.isEmpty()):
u = perimeter.removeMin()
known.add(u)
for each edge (u,v) to unknown v with weight w:

oldDist = distTo.get(v) // previous smallest edge to v
newDist = distTo.get(u) + w // is this a smaller edge to v?
if (newDist < oldDist):

distTo.put(u, newDist)
edgeTo.put(u, v)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

distTo.get(u) +

prims• Normally, Dijkstra’s checks for a
shorter path from the start.

• But MSTs don’t care about
individual paths, only the
overall weight!

• New condition: “would this be
a smaller edge to connect the
current known set to the rest of
the graph?”

X

KNOWN

3??

3

1

A

1

C
1??

B

4

A Different Approach
Suppose the MST on the right was produced by
Prim’s
Observation: We basically chose all the smallest edges
in the entire graph (1, 2, 3, 4, 6)
- The only exception was 5. Why shouldn’t we add edge 5?
- Because adding 5 would create a cycle, and to connect A, C, & D we’d

rather choose 1 & 4 than 1 & 5 or 4 & 5.

Prim’s thinks “vertex by vertex”, but what if you think
“edge by edge” instead?
- Start with the smallest edge in the entire graph and work your
way up

- Add the edge to the MST as long as it connects two new
groups (meaning don’t add any edges that would create a
cycle)

A

B

D

E
C

3 6
111

4
5

8

9107

2

F

Building an MST “edge by
edge” in this graph:

• Add edge 1
• Add edge 2
• Add edge 3
• Add edge 4
• Skip edge 5 (would create a

cycle)
• Add edge 6
• Finished: all vertices in the MST!

Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within

the same “island”, it forms a cycle!
Discard it.

- If an edge connects two vertices in
different “islands”, add it to the MST!
Now those “islands” need to be
combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within

the same “island”, it forms a cycle!
Discard it.

- If an edge connects two vertices in
different “islands”, add it to the MST!
Now those “islands” need to be
combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within

the same “island”, it forms a cycle!
Discard it.

- If an edge connects two vertices in
different “islands”, add it to the MST!
Now those “islands” need to be
combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within

the same “island”, it forms a cycle!
Discard it.

- If an edge connects two vertices in
different “islands”, add it to the MST!
Now those “islands” need to be
combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within

the same “island”, it forms a cycle!
Discard it.

- If an edge connects two vertices in
different “islands”, add it to the MST!
Now those “islands” need to be
combined.

A

B

D

E
C

2
111

3
5

8

9
107

6

F

“islands”

4

Kruskal’s Algorithm
This “edge by edge” approach is how Kruskal’s Algorithm works!

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

• Key Intuition: Kruskal’s keeps track
of isolated “islands” of vertices
(each is a sub-MST)

- Start with each vertex as its own “island”
- If an edge connects two vertices within

the same “island”, it forms a cycle!
Discard it.

- If an edge connects two vertices in
different “islands”, add it to the MST!
Now those “islands” need to be
combined.

A

B

D

E
C

4 2
111

3
5

8

9
107

6

F

“islands”

Prim’s Demos and Visualizations
Dijkstra’s Algorithm
Dijkstra’s proceeds radially from its source, because it
chooses edges by path length from source

Prim’s Algorithm
Prim’s jumps around the graph (the perimeter),
because it chooses edges by edge weight (there’s
no source)

Kruskal’ Demos and Visualizations
Kruskal’s Algorithm
Kruskal’s jumps around the entire graph, because it chooses
from all edges purely by edge weight (while preventing
cycles)

Prim’s Algorithm
Prim’s jumps around the graph (the perimeter),
because it chooses edges by edge weight (there’s
no source)

Selecting an ADT
Kruskal’s needs to find what MST a vertex belongs to,
and union those MSTs together
- Our existing ADTs don’t lend themselves well to “unioning” two

sets…
- Let’s define a new one!

A

B

D

E
C

4 2
111

3
5

8

9107

6

F

kruskalMST(G graph)
Set(?) msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST)

Disjoint Sets ADT (aka “Union-Find”)
Kruskal’s will use a Disjoint Sets ADT under the hood
- Conceptually, a single instance of this ADT contains a “family” of

sets that are disjoint (no element belongs to multiple sets)

DISJOINT SETS ADT

State
Family of Sets
• disjoint: no shared elements
• each set has a representative (either
a member or a unique ID)

Behavior
makeSet(value) – new set with value
as only member (and representative)
find(value) – return representative
of the set containing value
union(x, y) – combine sets containing
x and y into one set with all
elements, choose single new
representative

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);

A

B

D

E
C

4 2
111

3
5

8

9107

6

F

Project 4: Mazes!
You find yourself trapped in the Labyrinth of Greek
legend – bummer!
How do you solve a maze?
- If we could model a maze as a graph, we’d just need an algorithm

to find a path from s to t… Maybe even the shortest path?

How do you generate a maze?
- We’d love an algorithm that is guaranteed to connect s to t

(spanning), but only produces one path from s to t (tree)…

Project 4: Mazes
It turns out that randomizing the weights of a graph and then computing the MST is a
fantastic way to generate mazes!
In P4, you’ll do both: Implement Dijkstra’s to solve an arbitrary maze, then implement
Kruskal’s (and a Disjoint Set) to generate those mazes
This project is really application-heavy!
- Graphical User Interface (GUI) for viewing mazes and solving them
- Significantly more starter code than past projects, to give you practice integrating with an existing codebase
- A major part of the challenge in P4 is reading through the starter code to understand what you need to

interface with! Don’t underestimate the time that takes.

2* week project, and 2* weeks worth of work. It’s never been more important to start early!
- You really have 3 weeks because of Thanksgiving in the middle, but don’t let that fool you!

Disjoint Sets

21CSE 373 20 SP – CHAMPION & CHUN

Disjoint Sets in mathematics
- “In mathematics, two sets are said to be disjoint sets if they have no
element in common.” - Wikipedia
- disjoint = not overlapping

CSE 373 SP 18 - KASEY CHAMPION 22

Kevin

Aileen
Keanu

Sherdil

Leona

These two sets are disjoint sets

Nishu

Santino Brian

These two sets are not disjoint sets

Santino

Set #1 Set #2 Set #3 Set #4

Disjoint Sets in computer science
In computer science, disjointsets can refer to this ADT/data structure
that keeps track of the multiple “mini” sets that are disjoint (confusing
naming, I know)

CSE 373 SP 18 - KASEY CHAMPION 23

Kevin

Aileen
Keanu

Sherdil

Leona

Set #1 Set #2

This overall grey blob thing is the actual
disjoint sets, and it’s keeping track of any
number of mini-sets, which are all disjoint
(the mini sets have no overlapping
values).

Note: this might feel really different than ADTs we’ve
run into before. The ADTs we’ve seen before
(dictionaries, lists, sets, etc.) just store values directly.
But the Disjoint Set ADT is particularly interested in
letting you group your values into sets and
keep track of which particular set your values are in.

new ADT!

DisjointSets ADT methods

Just 3 methods (and makeSet is pretty simple!)

- findSet(value)
- union(valueA, valueB)
- makeSet(value)

CSE 373 SP 18 - KASEY CHAMPION 24

findSet(value)
findSet(value) returns some ID for which particular set the value is in. For Disjoint Sets, we
often call this the representative (as it’s a value that represents the whole set).

Examples:
findSet(Brian)
findSet(Sherdil)
findSet(Velocity)
findSet(Kevin) == findSet(Aileen)

CSE 373 SP 18 - KASEY CHAMPION 25

Kevin

Aileen

Keanu

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4
Keanu

Kasey

3

3

2

2

true

union(valueA, valueB)
union(valueA, valueB) merges the set that A is in with the set that B is in. (basically add the
two sets together into one)
Example: union(Blarry,Brian)

CSE 373 SP 18 - KASEY CHAMPION 26

Set #1
Set #3

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #2

Brian

Set #4
Keanu

Kasey

Set #1

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #2 Set #4

Kasey

Brian
Keanu

makeSet(value)
makeSet(value) makes a new mini set that just has the value parameter in it.

Examples:
makeSet(Elena)
makeSet(Anish)

CSE 373 SP 18 - KASEY CHAMPION 27

Kevin

Vivian

Blarry

Sherdil

Velocity

Set #1

Set #2

Brian

Set #3

Set #4
Keanu

Kasey

Elena
Set #5

Anish
Set #6

Disjoint Sets ADT Summary

CSE 373 SP 18 - KASEY CHAMPION 28

Disjoint-Sets ADT

makeSet(value) – creates a new set within the disjoint set where the
only member is the value. Picks id/representative for set

state

behavior

Set of Sets
- Mini sets are disjoint: Elements must be unique across mini sets
- No required order
- Each set has id/representative

findSet(value) – looks up the set containing the value, returns
id/representative/ of that set
union(x, y) – looks up set containing x and set containing y, combines
two sets into one. All of the values of one set are added to the other,
and the now empty set goes away.

New ADT

CSE 373 SP 18 - KASEY CHAMPION 29

Set ADT

create(x) - creates a new set with a single
member, x

Count of Elements

state

behavior

Set of elements
- Elements must be unique!
- No required order

add(x) - adds x into set if it is unique,
otherwise add is ignored
remove(x) – removes x from set
size() – returns current number of
elements in set

Disjoint-Set ADT

makeSet(x) – creates a new set within the disjoint set where the only
member is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing element x, returns
representative of that set
union(x, y) – looks up set containing x and set containing y, combines
two sets into one. Picks new representative for resulting set

D

B

C

A
D

C

F

B

A

G
H

Example
new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)

CSE 373 WI 18 – MICHAEL LEE 30

c

Rep: 2

e

Rep: 4

b

Rep: 1

d

Rep: 3

a

Rep: 0

Example

CSE 373 WI 18 – MICHAEL LEE 31

c

e

Rep: 4

b

Rep: 1

d

Rep: 3

a

Rep: 0

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)
union(b, d)

Example

CSE 373 WI 18 – MICHAEL LEE 32

c

e

Rep: 4

b

Rep: 1

d
a

Rep: 0

findSet(a) == findSet(c)
findSet(a) == findSet(d)

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)
union(b, d)

Implementation

CSE 373 SP 18 - KASEY CHAMPION 33

TreeDisjointSet<E>

makeSet(x)-create a new
tree of size 1 and add to
our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with
x and moves up tree to find
root

union(x, y)-append tree
with y as a child of tree
with x

Disjoint-Set ADT

makeSet(x) – creates a new set within
the disjoint set where the only member
is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets
- Disjoint: Elements must be unique

across sets
- No required order
- Each set has representative

findSet(x) – looks up the set containing
element x, returns representative of
that set

union(x, y) – looks up set containing x
and set containing y, combines two sets
into one. Picks new representative for
resulting set

Dictionary<NodeValues,
NodeLocations> nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior
SetNode overallRoot

add(x)

remove(x, y)
getRep()-returns data of
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode>
children

Implement makeSet(x)

Worst case runtime?
O(1)

CSE 373 SP 18 - KASEY CHAMPION 34

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)

QuickUnion Data Structure
Fundamental idea:
- QuickFind tracks each element’s ID
- QuickUnion tracks each element’s parent. Only the root has an ID!

- Each set becomes tree-like, but something slightly different called an up-tree: store pointers from children to parents!

Joyce, Sam,
Ken, Alex

Aileen,
Santino

Paul

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Abstract Idea of “Disjoint Sets” Implementation using QuickUnion

=

QuickUnion: Find

Key idea: can travel upward from any node to
find its representative ID
How do we jump to a node quickly?
- Also store a map from value to its node (Omitted in future

slides)

find(Santino) à 1
find(Ken) à 2
find(Santino) != find(Ken)
find(Santino) == find(Aileen)

find(Ken):
jump to Ken node
travel upward until root
return ID

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

Sam

Alex

Paul
…

QuickUnion: Union
Key idea: easy to simply rearrange pointers to union
entire trees together!
Which of these implementations would you prefer?

union(Ken, Santino):
rootS = find(Santino)
set Ken to point to rootS

union(Ken, Santino):
rootK = find(Ken)
rootS = find(Santino)
set rootK to point to rootS

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

RESULT:

Aileen (1)

Santino

Paul (3)

Joyce (2)

KenSam

Alex

QuickUnion: Union
union(Ken, Santino):
rootS = find(Santino)
set Ken to point to rootS

union(Ken, Santino):
rootK = find(Ken)
rootS = find(Santino)
set rootK to point to rootS

Aileen (1)

Santino

Paul (3)

Joyce (2)

Ken
Sam

Alex

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

RESULT:

• We prefer the right implementation because by changing just the root, we effectively pull the
entire tree into the new set!
• If we change the first node instead, we have to do more work for the rest of the old tree
• A rare example of constant time work manipulating a factor of n elements

QuickUnion: Why bother with the second
root?

Key idea: will help minimize runtime for future find() calls if we keep the height of the
tree short!
- Pointing directly to the second element would make the tree taller

union(Ken, Santino):
rootK = find(Ken)
rootS = find(Santino)
set rootK to point to rootS

Aileen (1)

Santino

Paul (3)

Joyce

KenSam

Alex

union(Ken, Santino):
rootK = find(Ken)
set rootK to point to Santino

Aileen (1)

Santino

Paul (3)
Joyce

KenSam

Alex

Why not just use:

QuickUnion: Checking in on those runtimes
Only if we discount the runtime from union’s
calls to find! Otherwise, Θ(𝑛).
- However, for Kruskal’s, not a bad assumption: we only

ever call union with roots anyway!

Maps to Sets QuickFind QuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1)
findSet(value) Θ(𝑛) Θ(1) Θ(𝑛)
union(x, y) Θ(𝑛) Θ(𝑛) Θ(1)

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

kruskalMST(G graph)
DisjointSets<V> msts; Set finalMST;
initialize msts with each vertex as single-element MST
sort all edges by weight (smallest to largest)

for each edge (u,v) in ascending order:
uMST = msts.find(u)
vMST = msts.find(v)
if (uMST != vMST):

finalMST.add(edge (u, v))
msts.union(uMST, vMST);

*
*

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to
come up with a series of calls to union that would create a worst-
case runtime for find on these Disjoint Sets:

A

B

C

D

QuickUnion: Let’s Build a Worst Case

union(A, B):
rootA = find(A)
rootB = find(B)
set rootA to point to rootB

find(A):
jump to A node
travel upward until root
return ID

Even with the ”use-the-roots” implementation of union, try to
come up with a series of calls to union that would create a worst-
case runtime for find on these Disjoint Sets:

A

B

C

D

QuickUnion: Let’s Build a Worst Case

union(A, B)
union(B, C)
union(C, D)
find(A) B

A

C

D

Analyzing the QuickUnion Worst Case
How did we get a degenerate tree?
- Even though pointing a root to a root usually helps with this, we can still get a degenerate tree if we put the

root of a large tree under the root of a small tree.
- In QuickUnion, rootA always goes under rootB

- But what if we could ensure the smaller tree went under the larger tree?

B

A

C

D

union(C, D) B

A

C

D

What currently
happens

What would help
avoid degenerate
tree

WeightedQuickUnion
Goal: Always pick the smaller tree to go
under the larger tree
Implementation: Store the number of nodes
(or “weight”) of each tree in the root
- Constant-time lookup instead of having to traverse

the entire tree to count

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

union(A, B)
union(B, C)
union(C, D)
find(A) A

B

C

D

Now what happens?

B

A C D

Perfect! Best runtime we can get.

WeightedQuickUnion: Performance
union()’s runtime is still dependent on find()’s runtime, which is a function of the tree’s
height
What’s the worst-case height for WeightedQuickUnion?

union(A, B):
rootA = find(A)
rootB = find(B)
put lighter root under heavier root

WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

N H

1 0

WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1

N H

1 0

2 1

WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1

2

3

N H

1 0

2 1

4 ?

WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1 2

3

N H

1 0

2 1

4 2

WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1 2

3

4

5 6

7

N H

1 0

2 1

4 2

8 ?

WeightedQuickUnion: Performance
Consider the worst case where the tree height grows as fast as possible

0

1 2

3

N H

1 0

2 1

4 2

8 34

5 6

7

WeightedQuickUnion: Performance

0

1 2

3

N H

1 0

2 1

4 2

8 3

16 4

4

5 6

7

8

9 10

11

12

13 14

15

• Consider the worst case where the tree height grows as fast as
possible
• Worst case tree height is Θ(log N)

Why Weights Instead of Heights?
We used the number of items in a tree to decide upon the root

Why not use the height of the tree?
- HeightedQuickUnion’s runtime is asymptotically the same: Θ(log(n))
- It’s easier to track weights than heights, even though WeightedQuickUnion can lead to some suboptimal

structures like this one:

1 2

0

4

6

53 8

9

7+ 1 2

0

4 653

8

9

7

WeightedQuickUnion Runtime

This is pretty good! But there’s one final optimization we can make: path compression

Maps to Sets QuickFind QuickUnion WeightedQuickUnion

makeSet(value) Θ(1) Θ(1) Θ(1) Θ(1)
find(value) Θ(𝑛) Θ(1) Θ(𝑛) Θ(log 𝑛)
union(x, y)
assuming root args

Θ(𝑛) Θ(𝑛) Θ(1) Θ(1)

union(x, y) Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(log 𝑛)

Appendix

Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 56

union(3, 5) 0 1 2 3 4 5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 57

union(3, 5)

union(2, 1)

0 1 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 58

union(3, 5)

union(2, 1)

union(2, 5)

0 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

1

Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 59

union(3, 5)

union(2, 1)

union(2, 5)

0 2

3

4

5

forest

0 1 2 3 4 5

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

1

Implement findSet(x)

CSE 373 SP 18 - KASEY CHAMPION 60

findSet(0)

findSet(3)

findSet(5)

0 2

3

4

5

forest

0 1 2 3 4 5

1

TreeDisjointSet<E>

makeSet(x)-create a new tree
of size 1 and add to our
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x
and moves up tree to find root
union(x, y)-append tree with y
as a child of tree with x

Dictionary<NodeValues,
NodeLocations> nodeInventory

Worst case runtime?

O(n)

Worst case runtime of union?

O(n)

