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Warm Up - BFS

PERIMETER

bfs(Graph graph, Vertex start) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();  

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
perimeter.add(to);
visited.add(to);

}
}

}
}
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Give a possible ordering of a BFS traversal of the 
following graph. Break ties between unvisited vertices 
by visiting the smaller vertex first



Administrivia
- Midterm due TONIGHT at 11:59pm – NO LATE ASSIGNMENTS
- Q4.1

- you can assume that going either left or right cuts the value of N in half
- Q7.1

- Files have a unique memory address
- You may select to chop up the String if you choose in your design

- Kasey midterm ”OH” tonight
- will be hanging out in Discord OH Lobby and monitoring Ed board tonight from 7pm on to clarify any last-minute questions

- Exercise 3 comes out later today



BFS for Shortest Paths: Example
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Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

EDGETO

DISTTO

The edgeTo map stores backpointers: each vertex remembers 
what vertex was used to arrive at it!
Note: this code stores visited, edgeTo, and distTo as external 
maps (only drawn on graph for convenience). Another 
implementation option: store them as fields of the nodes 
themselves
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What about the Target Vertex?
This modification on BFS didn’t mention the target vertex at 
all!
Instead, it calculated the shortest path and distance from 
start to every other vertex
- This is called the shortest path tree

- A general concept: in this implementation, made up of distances and backpointers

Shortest path tree has all the answers!
- Length of shortest path from A to D?

- Lookup in distTo map: 2
- What’s the shortest path from A to D?

- Build up backwards from edgeTo map: start at D, follow backpointer to B, follow 
backpointer to A – our shortest path is A à B à D

All our shortest path algorithms will have this property
- If you only care about t, you can sometimes stop early!
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Shortest Path Tree:



Recap: Graph Problems

EASY MEDIUM

s-t Connectivity Problem

Given source vertex s and a 
target vertex t, does there exist 

a path between s and t?

(Unweighted) Shortest Path 
Problem

Given source vertex s and a 
target vertex t, how long is the 
shortest path from s to t? What 

edges make up that path?

BFS or DFS + check if we’ve hit t BFS + generate shortest 
path tree as we go

What about the Shortest 
Path Problem on a weighted
graph?

Just like everything is Graphs, every problem is a Graph Problem
BFS and DFS are very useful tools to solve these! We’ll see plenty more.



Next Stop  Weighted Shortest Paths
HARDER (FOR NOW)

• Suppose we want to find shortest path 
from A to C, using weight of each edge 
as “distance”

• Is BFS going to give us the right result 
here?
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Dijkstra’s Algorithm
Named after its inventor, Edsger Dijkstra (1930-2002)
- Truly one of the “founders” of computer science
- 1972 Turing Award
- This algorithm is just one of his many contributions!
- Example quote: “Computer science is no more about computers than astronomy is about telescopes”

The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”



Dijkstra’s Algorithm: Idea

Initialization:
- Start vertex has distance 0; all other vertices have distance ¥

At each step:
- Pick closest unknown vertex v
- Add it to the “cloud” of known vertices
- Update “best-so-far” distances for vertices with edges from v
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dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u);
for each edge (u,v) from u with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS, 
“known” is nodes that are 
finalized (we know their 

path)

Dijkstra’s algorithm is all 
about updating “best-so-

far” in distTo if we find 
shorter path! Init all paths 

to infinite.

Order matters: always visit 
closest first!

Consider all vertices 
reachable from me: would 
getting there through me 

be a shorter path than they 
currently know about? 

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]
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Dijkstra’s Algorithm: Key Properties

Once a vertex is marked known, its 
shortest path is known
- Can reconstruct path by following back-

pointers (in edgeTo map)

While a vertex is not known, 
another shorter path might be 
found
- We call this update relaxing the distance 

because it only ever shortens the 
current best path

Going through closest vertices first 
lets us confidently say no shorter 
path will be found once known
- Because not possible to find a shorter 

path that uses a farther vertex we’ll 
consider later

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)



Dijkstra’s Algorithm: Example #1

12Order Added to 
Known Set:
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Dijkstra’s Algorithm: Example #1

13Order Added to 
Known Set:
A

Vertex Known? distTo edgeTo
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Dijkstra’s Algorithm: Example #1

14Order Added to 
Known Set:
A, C

Vertex Known? distTo edgeTo
A Y 0 /
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Dijkstra’s Algorithm: Example #1

15Order Added to 
Known Set:
A, C, B

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D £ 4 A
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Dijkstra’s Algorithm: Example #1

16Order Added to 
Known Set:
A, C, B, D

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A
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Dijkstra’s Algorithm: Example #1

17Order Added to 
Known Set:
A, C, B, D, F

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A
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Dijkstra’s Algorithm: Example #1

18Order Added to 
Known Set:
A, C, B, D, F, H

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A
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Dijkstra’s Algorithm: Example #1

19Order Added to 
Known Set:
A, C, B, D, F, H, G

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A
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Dijkstra’s Algorithm: Example #1

20Order Added to 
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F
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Dijkstra’s Algorithm: Interpreting the Results
Now that we’re done, how do we get the 
path from A to E?
Follow edgeTo backpointers!
distTo and edgeTo make up the shortest 
path tree

21Order Added to 
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
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Review: Key Features
Once a vertex is marked known, its shortest path is known
- Can reconstruct path by following backpointers

While a vertex is not known, another shorter path might be found!

The “Order Added to Known Set” is unimportant
- A detail about how the algorithm works (client doesn’t care)
- Not used by the algorithm (implementation doesn’t care)
- It is sorted by path-distance; ties are resolved “somehow”

If we only need path to a specific vertex, can stop early once that vertex is known
- Because its shortest path cannot change!
- Return a partial shortest path tree



Minimum Spanning Trees
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Minimum Spanning Trees
It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

She knows how much it would cost to lay electric wires between any 
pair of cities, and wants the cheapest way to make sure electricity from 
the plant to every city.
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MST Problem
What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. The edges “span” the graph.
- The graph on just those edges is connected.
- The minimum weight set of edges that meet those conditions.

Claim: The set of edges we pick never has a cycle. Why?
MST is the exact number of edges to connect all vertices
- taking away 1 edge breaks connectiveness 
- adding 1 edge makes a cycle
- contains exactly V – 1 edges
Our result is a tree!

25

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you 
can get from any vertex of G to any other on only 
those edges.

Minimum Spanning Tree Problem

CSE 373 20 SP – CHAMPION & CHUN

Interaction Pane Question:
Is there always a unique 
MST for a given graph, 
yes or no?
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Shortest Path vs Minimum Spanning

26CSE 373 20 SP – CHAMPION & CHUN

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t. 

Shortest Path Problem

Given: an undirected, weighted graph G
Find: A minimum-weight set of edges such that you can get 
from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem
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Shortest Path Tree
Specific start node (if you have a different start 
node,
that changes the whole SPT, so there are multiple 
SPTs for graphs frequently)
Keeps track of total path length.

Minimum Spanning Tree
No specific start node, since the goal is just to minimize 
the edge weights sum. Often only one possible MST that 
has the minimum sum.
All nodes connected
Keeps track of cheapest edges that maintain connectivity

SPT from Factory MST of the graph



Finding an MST
Here are two ideas for finding an MST:

Think vertex-by-vertex
-Maintain a tree over a set of vertices
-Have each vertex remember the cheapest edge that could connect it to that set.
-At every step, connect the vertex that can be connected the cheapest.

Think edge-by-edge
-Sort edges by weight. In increasing order:
-add it if it connects new things to each other (don’t add it if it would create a 
cycle)

Both ideas work!!

Interaction Pane Question:
Which of these do you think are more likely to 
work? 
• Thumbs up for vertex by vertex
• Thumbs down for edge by edge
• Clap for both
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Prim’s

Kruskal’s



Prim’s Algorithm
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Dijkstra’s
1. Start at source
2. Update distance from current to 

unprocessed neighbors
3. Add closest unprocessed 

neighbor to solution
4. Repeat until all vertices have been 

marked processed

Dijkstra(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(u.dist+weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}

Algorithm idea: 
1. Start at any node
2. Investigate edges that 

connect unprocessed 
vertices

3. Add the lightest edge 
that grows connectivity 
to solution

4. Repeat until all vertices 
have been marked 
processed

Prims(Graph G, Vertex source) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist){
v.dist = u.dist+weight(u,v)
v.predecessor = u

}
}
mark u as processed

}
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In the Chat
Which lines of Dijkstra can we 
change to create our new 
algorithm?



Try it Out
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PrimMST(Graph G) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v) ) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed ){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}
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Try it Out
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PrimMST(Graph G) 
initialize distances to ∞
mark source as distance 0
mark all vertices unprocessed
foreach(edge (source, v) ) {

v.dist = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the closest unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.dist && v unprocessed ){
v.dist = weight(u,v)
v.bestEdge = (u,v)

}
}
mark u as processed

}
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--------(C, E)

✓
✓

✓



A different Approach
Prim’s Algorithm started from a single vertex and reached more and more 
other vertices.
Prim’s thinks vertex by vertex (add the closest vertex to the currently 
reachable set).
Prim's Algorithm Visualization

What if you think edge by edge instead?
Start from the lightest edge; add it if it connects new things to each other 
(don’t add it if it would create a cycle)
This is Kruskal’s Algorithm.
Kruskal's Algorithm Visualization

CSE 373 20 SP – CHAMPION & CHUN

https://www.youtube.com/watch?v=6uq0cQZOyoY
https://www.youtube.com/watch?v=ggLyKfBTABo


Kruskal’s Algorithm

KruskalMST(Graph G) 
initialize each vertex to be its own component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}
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Try It Out
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KruskalMST(Graph G) 
initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same 

component
}

}

Edge Include? Reason
(A,C)
(C,E)
(A,B)
(A,D)
(C,D)

Edge (cont.) Inc? Reason
(B,F)
(D,E)
(D,F)
(E,F)
(C,F)
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Try It Out
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KruskalMST(Graph G) 
initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same 

component
}

}
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Edge Include? Reason
(A,C) Yes
(C,E) Yes
(A,B) Yes
(A,D) Yes
(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason
(B,F) Yes
(D,E) No Cycle A,C,E,D,A
(D,F) No Cycle A,D,F,B,A
(E,F) No Cycle A,C,E,F,D,A
(C,F) No Cycle C,A,B,F,C



Kruskal’s Implementation

Some lines of code there were a little sketchy. 
> initialize each vertex to be its own component
> Update u and v to be in the same component

Can we use one of our data structures?
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KruskalMST(Graph G) 
initialize each vertex to be its own component

sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same 

component
}

}


